Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

19-08-2021 | Regular Paper | Issue 6/2021

Journal of Visualization 6/2021

Visual abstraction of large-scale geographical point data with credible spatial interpolation

Journal:
Journal of Visualization > Issue 6/2021
Authors:
Fengling Zheng, Jin Wen, Xiang Zhang, Yuanyuan Chen, Xinlong Zhang, Yanan Liu, Ting Xu, Xiaohui Chen, Yigang Wang, Weihua Su, Zhiguang Zhou
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With the increasing size of geographical point data, scatterplot often suffers from serious overdraw problems, which greatly hinders the visual exploration and analysis of data. At present, a variety of sampling methods considering data features have been proposed to simplify the large-scale geographical point data to alleviate this problem. However, there is still no attempt to simplify data from the perspective of geostatistics in the sampling methods, which will be greatly beneficial to explore the spatial information of unknown points and restore the original data features. In this paper, a sampling model is proposed to generate a representative subset from the large-scale geographical point data to improve the interpolation quality of the sampled points and preserve attribute features of original data, in which a semivariable function is applied to capture geostatistical characteristics of data attributes. A set of visual interfaces are further implemented enabling users to visually evaluate the sampled results of different methods and effectively conduct geospatial analysis. Case studies and quantitative comparisons based on the real-world geographical datasets further demonstrate the validity of our interpolation-driven sampling model in the abstraction and analysis of large-scale geographical point data.

Graphic abstract

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

Journal of Visualization 6/2021 Go to the issue

Premium Partner

    Image Credits