Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-01-2021 | Regular Paper | Issue 2/2021

Journal of Visualization 2/2021

Visual analysis of meteorological satellite data via model-agnostic meta-learning

Journal:
Journal of Visualization > Issue 2/2021
Authors:
Shiyu Cheng, Hanwei Shen, Guihua Shan, Beifang Niu, Weihua Bai
Important notes

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s12650-020-00704-4) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Satellites detect the distribution of meteorological data worldwide. However, due to the orbital constraints, the satellite can only reach the same area again after one orbiting cycle. The interval between two detections in the same area is long, and the variation of meteorological data between the two detections is unknown. Moreover, meteorological satellite data are only located near the orbit in one cycle, while the global distribution of meteorological data is unknown. Our method allows to train a regression model with only few meteorological satellite data by taking advantage of the recent advances in deep learning. In detail, we train a model-agnostic meta-learning (MAML) model with data from ground stations instead of meteorological satellites and get the initial network parameters. Based on the initial network parameters trained by MAML, we train the regression models again for different areas. We sample the regression curves of all areas by time and get a time series of global meteorological data distribution. Through case studies conducted together with domain experts, we validate the effectiveness of our method.

Graphic abstract

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 2/2021

Journal of Visualization 2/2021 Go to the issue

Premium Partner

    Image Credits