Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

13-10-2021 | Regular Paper

Visual analytics of genealogy with attribute-enhanced topological clustering

Journal:
Journal of Visualization
Authors:
Ling Sun, Xiang Zhang, Xiaan Pan, Yuhua Liu, Wanghao Yu, Ting Xu, Fang Liu, Weifeng Chen, Yigang Wang, Weihua Su, Zhiguang Zhou
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Clustering is able to present a brief illustration for families of interest and patterns of significance within large-scale genealogical datasets. In the traditional clustering methods, topological features are mostly taken for summarizing and organizing family trees. However, plentiful attributes are ignored which are also important to enhance the understanding and interpretation of genealogical clustering features. Thus, it is a crucial task to combine structures and attributes into a clustering model for exploring genealogy datasets. In this paper, we propose an attribute-enhanced topological clustering method for exploring genealogy datasets based on partial least squares (PLS). Firstly, a graphlet kernel method is utilized to measure the structure difference between family trees. Then, we leverage PLS to combine the learned vectors and multiple attributes, and a joint dimensionality reduction method is applied to project the high-dimensional vectors into a two-dimensional space in which a distance-based clustering method is employed to aggregate the similar family trees taking both the topological structures and attribute features into consideration. Further, we implement a visual analysis system with multi-view collaboration, including glyph, family tree view and parallel coordinate view, to represent, evaluate and explore the clustering features. Case studies and quantitative comparisons based on real-world genealogy datasets have demonstrated the effectiveness of our method in genealogical clustering and exploration.

Graphic abstract

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Premium Partner

    Image Credits