Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-08-2015 | Issue 4/2015

Cognitive Computation 4/2015

Visual Attention Model Based Vehicle Target Detection in Synthetic Aperture Radar Images: A Novel Approach

Journal:
Cognitive Computation > Issue 4/2015
Authors:
Fei Gao, Ye Zhang, Jun Wang, Jinping Sun, Erfu Yang, Amir Hussain

Abstract

The human visual system (HVS) possesses a remarkable ability of real-time complex scene analysis despite the limited neuronal hardware available for such tasks. The HVS successfully overcomes the problem of information bottleneck by selecting potential regions of interest and reducing the amount of data transmitted to high-level visual processing. On the other hand, many man-made systems are also confronted with the same problem yet fail to achieve satisfactory performance. Among these, the synthetic aperture radar-based automatic target recognition (SAR-ATR) system is a typical one, where the traditional detection algorithm employed is termed the constant false alarm rate (CFAR). It is known to exhibit a low probability of detection (PD) and consumes too much time. The visual attention model (VAM) is a computational model, which aims to imitate the HVS in predicting where humans will look. The application of VAM to the SAR-ATR system could thus help solve the problem of effective real-time processing of complex large amounts of data. In this paper, we propose a new vehicle target detection algorithm for SAR images based on the VAM. The algorithm modifies the well-known Itti model according to the requirements of target detection in SAR images. The modified Itti model locates salient regions in SAR images and following top-down processing reduces false alarms by using prior knowledge. Real SAR data are used to demonstrate the validity and effectiveness of the proposed algorithm, which is also benchmarked against the traditional CFAR algorithm. Simulation results show comparatively improved performance in terms of PD, number of false alarms and computing time.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2015

Cognitive Computation 4/2015 Go to the issue

Premium Partner

    Image Credits