Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 9/2017

11-02-2017 | Original Article

Visualization of vascular injuries in extremity trauma

Authors: Kwitae Chong, Chenfanfu Jiang, Daniel Ram, Anand Santhanam, Demetri Terzopoulos, Peyman Benharash, Erik Dutson, Joseph Teran, Jeff D. Eldredge

Published in: Medical & Biological Engineering & Computing | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A tandem of particle-based computational methods is adapted to simulate injury and hemorrhage in the human body. In order to ensure anatomical fidelity, a three-dimensional model of a targeted portion of the human body is reconstructed from a dense sequence of CT scans of an anonymized patient. Skin, bone and muscular tissue are distinguished in the imaging data and assigned with their respective material properties. An injury geometry is then generated by simulating the mechanics of a ballistic projectile passing through the anatomical model with the material point method. From the injured vascular segments identified in the resulting geometry, smoothed particle hydrodynamics (SPH) is employed to simulate bleeding, based on inflow boundary conditions obtained from a network model of the systemic arterial tree. Computational blood particles interact with the stationary particles representing impermeable bone and skin and permeable muscular tissue through the Brinkman equations for porous media. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on an injury scenario in the lower leg.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M (2012) Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph 31(4), Art ID 62. doi:10.1145/2185520.2185558 Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M (2012) Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph 31(4), Art ID 62. doi:10.​1145/​2185520.​2185558
2.
go back to reference Avolio AP (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18(6):709–718CrossRefPubMed Avolio AP (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18(6):709–718CrossRefPubMed
3.
go back to reference Basdogan C, Ho C-H, Srinivasan MA (2001) Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans Mechatron 6(3):269–285CrossRef Basdogan C, Ho C-H, Srinivasan MA (2001) Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans Mechatron 6(3):269–285CrossRef
4.
go back to reference Boisvert J, Poirier G, Borgeat L, Godin G (2013) Real-time blood circulation and bleeding model for surgical training. IEEE Trans Biomed Eng 60(4):1013–1022CrossRefPubMed Boisvert J, Poirier G, Borgeat L, Godin G (2013) Real-time blood circulation and bleeding model for surgical training. IEEE Trans Biomed Eng 60(4):1013–1022CrossRefPubMed
5.
go back to reference Bridson R (2007) Fast poisson disk sampling in arbitrary dimensions. In: ACM SIGGRAPH 2007 Sketches. SIGGRAPH ’ 07:2007 Bridson R (2007) Fast poisson disk sampling in arbitrary dimensions. In: ACM SIGGRAPH 2007 Sketches. SIGGRAPH ’ 07:2007
6.
go back to reference Courtecuisse H, Allard J, Kerfriden P, Bordas SP, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18(2):394–410CrossRefPubMed Courtecuisse H, Allard J, Kerfriden P, Bordas SP, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18(2):394–410CrossRefPubMed
7.
go back to reference Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc 425(2):1068–1082CrossRef Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc 425(2):1068–1082CrossRef
8.
go back to reference Desbrun M, Gascuel MP (1996) Smoothed particles: a new paradigm for animating highly deformable bodies. In: Computer animation and simulation ’96 proceedings of EG workshop on animation and simulation. Springer, pp 61–76 Desbrun M, Gascuel MP (1996) Smoothed particles: a new paradigm for animating highly deformable bodies. In: Computer animation and simulation ’96 proceedings of EG workshop on animation and simulation. Springer, pp 61–76
9.
go back to reference Durlofsky L, Brady JF (1987) Analysis of the brinkman equation as a model for flow in porous media. Phys Fluids 30:3329–3341CrossRef Durlofsky L, Brady JF (1987) Analysis of the brinkman equation as a model for flow in porous media. Phys Fluids 30:3329–3341CrossRef
10.
go back to reference Frank P, Eldredge JD, Benharash P, Dutson EP (2016) Real-time numerical simulation of the cardiovascular system and autoregulatory mechanisms in response to hemorrhagic injury. In: Preparation Frank P, Eldredge JD, Benharash P, Dutson EP (2016) Real-time numerical simulation of the cardiovascular system and autoregulatory mechanisms in response to hemorrhagic injury. In: Preparation
11.
go back to reference Gallagher AG, Ritter EM, Champion H, Higgins G, Fried Marvin P, Moses Gerald, Smith C Daniel, Satava Smith (2005) Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 241(2):364–372CrossRefPubMedPubMedCentral Gallagher AG, Ritter EM, Champion H, Higgins G, Fried Marvin P, Moses Gerald, Smith C Daniel, Satava Smith (2005) Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 241(2):364–372CrossRefPubMedPubMedCentral
12.
go back to reference Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. MNRAS 181:375–389CrossRef Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. MNRAS 181:375–389CrossRef
13.
go back to reference Horvath CJ, Solenthaler B (2013) Mass preserving multi-scale sph. In: Pixar Technical Memo 13-04, Pixar Animation Studios Horvath CJ, Solenthaler B (2013) Mass preserving multi-scale sph. In: Pixar Technical Memo 13-04, Pixar Animation Studios
14.
go back to reference Jiang C, Schroeder C, Selle A, Teran J, Stomakhin A (2015) The affine particle-in-cell method. ACM Trans Graph 34(4):51:1–51:10CrossRef Jiang C, Schroeder C, Selle A, Teran J, Stomakhin A (2015) The affine particle-in-cell method. ACM Trans Graph 34(4):51:1–51:10CrossRef
15.
go back to reference Kellman J (2014) Adaptive response-time-based category sequencing in perceptual learning. Vis Res 99:111–123CrossRefPubMed Kellman J (2014) Adaptive response-time-based category sequencing in perceptual learning. Vis Res 99:111–123CrossRefPubMed
16.
go back to reference Krasne S, Hillman JD, Kellman PJ, Drake TA et al (2013) Applying perceptual and adaptive learning techniques for teaching introductory histopathology. J Pathol Inform 4(1):34CrossRefPubMedPubMedCentral Krasne S, Hillman JD, Kellman PJ, Drake TA et al (2013) Applying perceptual and adaptive learning techniques for teaching introductory histopathology. J Pathol Inform 4(1):34CrossRefPubMedPubMedCentral
17.
go back to reference Kühnapfel U, Cakmak HK, Maaß H (2000) Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput Graph 24(5):671–682CrossRef Kühnapfel U, Cakmak HK, Maaß H (2000) Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput Graph 24(5):671–682CrossRef
18.
go back to reference Liu A, Tendick F, Cleary K, Kaufmann C (2003) A survey of surgical simulation: applications, technology, and education. Presence Teleoperators Virtual Environ 12(6):599–614CrossRef Liu A, Tendick F, Cleary K, Kaufmann C (2003) A survey of surgical simulation: applications, technology, and education. Presence Teleoperators Virtual Environ 12(6):599–614CrossRef
19.
go back to reference Lucy LB (1977) Numerical study of liquid composite molding using a smoothed particle hydrodynamics method. Astron J 82:1013–1024CrossRef Lucy LB (1977) Numerical study of liquid composite molding using a smoothed particle hydrodynamics method. Astron J 82:1013–1024CrossRef
20.
go back to reference Meier U, López O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77(3):183–197CrossRefPubMed Meier U, López O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77(3):183–197CrossRefPubMed
21.
go back to reference Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation
22.
go back to reference Müller M, Schirm S, Teschner M (2003) Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol Health Care 12:25–31 Müller M, Schirm S, Teschner M (2003) Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol Health Care 12:25–31
23.
go back to reference Museth K (2014) A flexible image processing approach to the surfacing of particle-based fluid animation (invited talk). In: Mathematical progress in expressive image synthesis I, volume 4 of mathematics for industry, pp 81–84 Museth K (2014) A flexible image processing approach to the surfacing of particle-based fluid animation (invited talk). In: Mathematical progress in expressive image synthesis I, volume 4 of mathematics for industry, pp 81–84
24.
go back to reference Oger Guillaume, Doring Mathieu, Alessandrini Bertrand, Ferrant Pierre (2007) An improved sph method: Towards higher order convergence. Journal of Computational Physics 225(2):1472–1492CrossRef Oger Guillaume, Doring Mathieu, Alessandrini Bertrand, Ferrant Pierre (2007) An improved sph method: Towards higher order convergence. Journal of Computational Physics 225(2):1472–1492CrossRef
25.
go back to reference Ram D, Gast T, Jiang C, Schroeder C, Stomakhin A, Teran J, Kavehpour P (2015) A material point method for viscoelastic fluids, foams and sponges. In: Proceedings of the 14th ACM SIGGRAPH / Eurographics symposium on computer animation, SCA ’15, pp 157–163 Ram D, Gast T, Jiang C, Schroeder C, Stomakhin A, Teran J, Kavehpour P (2015) A material point method for viscoelastic fluids, foams and sponges. In: Proceedings of the 14th ACM SIGGRAPH / Eurographics symposium on computer animation, SCA ’15, pp 157–163
26.
go back to reference Solenthaler B, Gross M (2011) Two-scale particle simulation. In: Proceedings of ACM SIGGRAPH 30:2011 Solenthaler B, Gross M (2011) Two-scale particle simulation. In: Proceedings of ACM SIGGRAPH 30:2011
27.
go back to reference Stam J, Fiume E (1995) Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques, pp 129–136. ACM Stam J, Fiume E (1995) Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques, pp 129–136. ACM
28.
go back to reference Stergiopulos N, Young DF, Rogge TR (1992) Computer simulation of arterial flow with application to arterial and aortic stenoses. J Biomech 25(12):1477–1488CrossRefPubMed Stergiopulos N, Young DF, Rogge TR (1992) Computer simulation of arterial flow with application to arterial and aortic stenoses. J Biomech 25(12):1477–1488CrossRefPubMed
29.
go back to reference Stomakhin A, Schroeder C, Chai L, Teran J, Selle A (2013) A material point method for snow simulation. ACM Trans Graph 32(4):1021–10210CrossRef Stomakhin A, Schroeder C, Chai L, Teran J, Selle A (2013) A material point method for snow simulation. ACM Trans Graph 32(4):1021–10210CrossRef
30.
go back to reference Stomakhin A, Schroeder C, Jiang C, Chai L, Teran J, Selle A (2014) Augmented MPM for phase-change and varied materials. ACM Trans Graph 33(4):138:1–138:11CrossRef Stomakhin A, Schroeder C, Jiang C, Chai L, Teran J, Selle A (2014) Augmented MPM for phase-change and varied materials. ACM Trans Graph 33(4):138:1–138:11CrossRef
31.
go back to reference Su D, Ma R, Zhur L (2011) Numerical study of liquid composite molding using a smoothed particle hydrodynamics method. Special Top Rev Porous Media Int J 2(3):205–212CrossRef Su D, Ma R, Zhur L (2011) Numerical study of liquid composite molding using a smoothed particle hydrodynamics method. Special Top Rev Porous Media Int J 2(3):205–212CrossRef
32.
go back to reference Sulsky D, Zhou S-J, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252CrossRef Sulsky D, Zhou S-J, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252CrossRef
33.
go back to reference Womersley JR (1957) Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys Med Biol 2:178–187CrossRefPubMed Womersley JR (1957) Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys Med Biol 2:178–187CrossRefPubMed
Metadata
Title
Visualization of vascular injuries in extremity trauma
Authors
Kwitae Chong
Chenfanfu Jiang
Daniel Ram
Anand Santhanam
Demetri Terzopoulos
Peyman Benharash
Erik Dutson
Joseph Teran
Jeff D. Eldredge
Publication date
11-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 9/2017
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1619-9

Other articles of this Issue 9/2017

Medical & Biological Engineering & Computing 9/2017 Go to the issue

Premium Partner