Skip to main content
Top

2024 | OriginalPaper | Chapter

17. Vulnerability Prediction of Web Applications from Source Code Based on Machine Learning and Deep Learning: Where Are At?

Authors : Mawulikplimi Florent Gnadjro, Samba Diaw

Published in: Mathematics of Computer Science, Cybersecurity and Artificial Intelligence

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the critical issue of predicting vulnerabilities in web application source code using advanced machine learning and deep learning techniques. It begins by emphasizing the significant growth of web applications and the corresponding increase in software vulnerabilities, which pose severe security threats. The chapter then explores the limitations of traditional static analysis tools and the promising potential of machine learning and deep learning in automating vulnerability detection. It discusses innovative approaches such as using graphical representations of source code and deep learning models to enhance vulnerability prediction accuracy. Additionally, the chapter addresses the challenges and future research directions in this field, including the need for high-quality datasets and effective source code representation. The chapter concludes by highlighting the importance of integrating machine learning models into development tools to enhance vulnerability detection and remediation processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Raducu, Razvan, Gonzalo Esteban, Francisco J. Rodríguez Lera, and Camino Fernández. 2020. “Collecting Vulnerable Source Code from Open-Source Repositories for Dataset Generation” Applied Sciences 10, no. 4: 1270. https://doi.org/10.3390/app10041270 Raducu, Razvan, Gonzalo Esteban, Francisco J. Rodríguez Lera, and Camino Fernández. 2020. “Collecting Vulnerable Source Code from Open-Source Repositories for Dataset Generation” Applied Sciences 10, no. 4: 1270. https://​doi.​org/​10.​3390/​app10041270
10.
go back to reference F. Yamaguchi, M. Lottmann, K. Rieck, Generalized Vulnerability extrapolation using abstract syntax trees, in: Proceedings of the 28th Annual Computer Security Applications Conference, 2012, pp. 359–368 F. Yamaguchi, M. Lottmann, K. Rieck, Generalized Vulnerability extrapolation using abstract syntax trees, in: Proceedings of the 28th Annual Computer Security Applications Conference, 2012, pp. 359–368
11.
go back to reference K. Zhang, W. Wang, H. Zhang, G. Li and Z. Jin, “Learning to Represent Programs with Heterogeneous Graphs,” 2022 IEEE/ACM 30th International Conference on Program Comprehension (ICPC), Pittsburgh, PA, USA, 2022, pp. 378–389, doi: https://doi.org/10.1145/3524610.3527905. K. Zhang, W. Wang, H. Zhang, G. Li and Z. Jin, “Learning to Represent Programs with Heterogeneous Graphs,” 2022 IEEE/ACM 30th International Conference on Program Comprehension (ICPC), Pittsburgh, PA, USA, 2022, pp. 378–389, doi: https://​doi.​org/​10.​1145/​3524610.​3527905.
12.
go back to reference S. Singh, “CyberSecurity (CybSec) Automated Vulnerability Detection in Java Source Code using J-CPG and Graph Neural Network,” 2021. S. Singh, “CyberSecurity (CybSec) Automated Vulnerability Detection in Java Source Code using J-CPG and Graph Neural Network,” 2021.
14.
go back to reference R. Jenni, “Better Code Representation for Machine Learning,” 2022. R. Jenni, “Better Code Representation for Machine Learning,” 2022.
16.
go back to reference R. Halepmollası, K. Hanifi, R. F. Fouladi, and A. Tosun, “A Comparison of Source Code Representation Methods to Predict Vulnerability Inducing Code Changes,” in International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE - Proceedings, Science and Technology Publications, Lda, 2023, pp. 469–478. doi: https://doi.org/10.5220/0011859300003464. R. Halepmollası, K. Hanifi, R. F. Fouladi, and A. Tosun, “A Comparison of Source Code Representation Methods to Predict Vulnerability Inducing Code Changes,” in International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE - Proceedings, Science and Technology Publications, Lda, 2023, pp. 469–478. doi: https://​doi.​org/​10.​5220/​0011859300003464​.
17.
19.
go back to reference G. Bhandari, A. Naseer, and L. Moonen, “CVEfixes: Automated collection of vulnerabilities and their fixes from open-source software,” in PROMISE 2021 - Proceedings of the 17th International Conference on Predictive Models and Data Analytics in Software Engineering, co-located with ESEC/FSE 2021, Association for Computing Machinery, Inc., Aug. 2021, pp. 30–39. doi: https://doi.org/10.1145/3475960.3475985. G. Bhandari, A. Naseer, and L. Moonen, “CVEfixes: Automated collection of vulnerabilities and their fixes from open-source software,” in PROMISE 2021 - Proceedings of the 17th International Conference on Predictive Models and Data Analytics in Software Engineering, co-located with ESEC/FSE 2021, Association for Computing Machinery, Inc., Aug. 2021, pp. 30–39. doi: https://​doi.​org/​10.​1145/​3475960.​3475985.
20.
go back to reference D. Grahn and J. Zhang, “An Analysis of C/C++ Datasets for Machine Learning-Assisted Software Vulnerability Detection,” 2021. D. Grahn and J. Zhang, “An Analysis of C/C++ Datasets for Machine Learning-Assisted Software Vulnerability Detection,” 2021.
21.
go back to reference Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E. Díaz Ferreyra, “Vul4J,” 2022. Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E. Díaz Ferreyra, “Vul4J,” 2022.
Metadata
Title
Vulnerability Prediction of Web Applications from Source Code Based on Machine Learning and Deep Learning: Where Are At?
Authors
Mawulikplimi Florent Gnadjro
Samba Diaw
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-66222-5_17

Premium Partner