Skip to main content
Top
Published in: Advances in Manufacturing 3/2013

01-09-2013

Wafer-level SLID bonding for MEMS encapsulation

Authors: H. Xu, T. Suni, V. Vuorinen, J. Li, H. Heikkinen, P. Monnoyer, M. Paulasto-Kröckel

Published in: Advances in Manufacturing | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hermetic packaging is often an essential requirement to enable proper functionality throughout the device’s lifetime and ensure the optimal performance of a micro electronic mechanical system (MEMS) device. Solid-liquid interdiffusion (SLID) bonding is a novel and attractive way to encapsulate MEMS devices at a wafer level. SLID bonding utilizes a low-melting-point metal to reduce the bonding process temperature; and metallic seal rings take out less of the valuable surface area and have a lower gas permeability compared to polymer or glass-based sealing materials. In addition, ductile metals can adopt mechanical and thermo-mechanical stresses during their service lifetime, which improves their reliability. In this study, the principles of Au-Sn and Cu-Sn SLID bonding are presented, which are meant to be used for wafer-level hermetic sealing of MEMS resonators. Seal rings in 15.24 cm silicon wafers were bonded at a width of 60 μm, electroplated, and used with Au-Sn and Cu-Sn layer structures. The wafer bonding temperature varied between 300 °C and 350 °C, and the bonding force was 3.5 kN under the ambient pressure, that is, it was less than 0.1 Pa. A shear test was used to compare the mechanical properties of the interconnections between both material systems. In addition, important factors pertaining to bond ring design are discussed according to their effects on the failure mechanisms. The results show that the design of metal structures can significantly affect the reliability of bond rings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Suhir E, Lee YC, Wong CP (2007) Micro- and optoelectronic materials and structures: physics, mechanics, design, reliability, packaging. Springer, New YorkCrossRef Suhir E, Lee YC, Wong CP (2007) Micro- and optoelectronic materials and structures: physics, mechanics, design, reliability, packaging. Springer, New YorkCrossRef
2.
go back to reference Tummala RR, Swaminathan M (2008) Introduction to system-on-package: miniaturization of the entire system. McGraw-Hill, New York Tummala RR, Swaminathan M (2008) Introduction to system-on-package: miniaturization of the entire system. McGraw-Hill, New York
3.
go back to reference Hartzell AL, Silva MG, Shea HR (2010) MEMS reliability. Springer, Brookline Hartzell AL, Silva MG, Shea HR (2010) MEMS reliability. Springer, Brookline
4.
go back to reference Bernstein L (1966) Semiconductor joining by the solid-liquid-interdiffusion (SLID) process: I. The systems Ag-In, Au-In, and Cu-In. J Electrochem Soc 113(12):1282–1288CrossRef Bernstein L (1966) Semiconductor joining by the solid-liquid-interdiffusion (SLID) process: I. The systems Ag-In, Au-In, and Cu-In. J Electrochem Soc 113(12):1282–1288CrossRef
5.
go back to reference Li JF, Agyakwa PA, Johnson CM (2010) Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process. Acta Mater 58(9):3429–3443CrossRef Li JF, Agyakwa PA, Johnson CM (2010) Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process. Acta Mater 58(9):3429–3443CrossRef
6.
go back to reference Tollefsen TA, Larsson A, Løvvik OM et al (2012) Au-Sn SLID bonding—properties and possibilities. Metall Mater Trans B 43(2):397–405CrossRef Tollefsen TA, Larsson A, Løvvik OM et al (2012) Au-Sn SLID bonding—properties and possibilities. Metall Mater Trans B 43(2):397–405CrossRef
7.
go back to reference Matijasevic GS, Lee CC, Wang CY (1993) AuSn alloy phase diagram and properties related to its use as a bonding medium. Thin Solid Films 223(2):276–287CrossRef Matijasevic GS, Lee CC, Wang CY (1993) AuSn alloy phase diagram and properties related to its use as a bonding medium. Thin Solid Films 223(2):276–287CrossRef
8.
go back to reference Lee CL, Wang YW, Matijasevic G (1993) Advances in bonding technology for electronic packaging. J Electron Packag 115(2):201–207CrossRef Lee CL, Wang YW, Matijasevic G (1993) Advances in bonding technology for electronic packaging. J Electron Packag 115(2):201–207CrossRef
9.
go back to reference Johnson WR, Wang CQ, Liu Y et al (2007) Power device packaging technologies for extreme environments. IEEE Trans Electron Packag Manuf 30(3):182–193CrossRef Johnson WR, Wang CQ, Liu Y et al (2007) Power device packaging technologies for extreme environments. IEEE Trans Electron Packag Manuf 30(3):182–193CrossRef
10.
go back to reference Wang K, Aasmundtveit K, Jakobsen H (2008) Surface evolution and bonding properties of electroplated Au/Sn/Au. In: Electronics system-integration technology conference, Greenwich, 1–4 Sept 2008, pp 1131–1134 Wang K, Aasmundtveit K, Jakobsen H (2008) Surface evolution and bonding properties of electroplated Au/Sn/Au. In: Electronics system-integration technology conference, Greenwich, 1–4 Sept 2008, pp 1131–1134
11.
go back to reference Bartels F, Morris JW, Dalke G et al (1994) Intermetallic phase formation in thin solid-liquid diffusion couples. J Eletron Mater 23(8):787–790 Bartels F, Morris JW, Dalke G et al (1994) Intermetallic phase formation in thin solid-liquid diffusion couples. J Eletron Mater 23(8):787–790
12.
go back to reference Bosco NS, Zok FW (2005) Strength of joints produced by transient liquid phase bonding in the Cu-Sn system. Acta Mater 53(7):2019–2027CrossRef Bosco NS, Zok FW (2005) Strength of joints produced by transient liquid phase bonding in the Cu-Sn system. Acta Mater 53(7):2019–2027CrossRef
13.
go back to reference Agarwal R, Zhang W, Limaye P et al (2009) High density Cu-Sn TLP bonding for 3D integration. In: Electronic components and technology conference (ECTC 2009. 59th), San Diego, CA, 26–29 May 2009, pp 345–349 Agarwal R, Zhang W, Limaye P et al (2009) High density Cu-Sn TLP bonding for 3D integration. In: Electronic components and technology conference (ECTC 2009. 59th), San Diego, CA, 26–29 May 2009, pp 345–349
14.
go back to reference Welch W, Chae J, Lee SH et al (2005) Transient liquid phase (TLP) bonding for microsystem packaging applications. The 13th international conference on solid-state sensors, actuators and microsystems. doi:10.1109/SENSOR.2005.1497331 Welch W, Chae J, Lee SH et al (2005) Transient liquid phase (TLP) bonding for microsystem packaging applications. The 13th international conference on solid-state sensors, actuators and microsystems. doi:10.​1109/​SENSOR.​2005.​1497331
15.
go back to reference Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18(7):073001CrossRef Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18(7):073001CrossRef
16.
17.
go back to reference Zhang W, Dimcic B, Limaye P et al (2011) Ni/Cu/Sn bumping scheme for fine-pitch micro-bump connections. In: Electronic components and technology (ECTC), Lake Buena Vista, FL, May 31–June 3 2011, pp 109–113 Zhang W, Dimcic B, Limaye P et al (2011) Ni/Cu/Sn bumping scheme for fine-pitch micro-bump connections. In: Electronic components and technology (ECTC), Lake Buena Vista, FL, May 31–June 3 2011, pp 109–113
18.
go back to reference Brem F, Liu C, Raik D (2012) Influence of Cu joining partner in transient liquid phase bonding. In: Electronics system integration technologies conference (ESTC). doi:10.1109/ESTC.2012.6542135 Brem F, Liu C, Raik D (2012) Influence of Cu joining partner in transient liquid phase bonding. In: Electronics system integration technologies conference (ESTC). doi:10.​1109/​ESTC.​2012.​6542135
19.
go back to reference Liu H, Salomonsen G, Wang K et al (2011) Wafer-level Cu/Sn to Cu/Sn SLID-bonded interconnects with increased strength. IEEE Trans Comput Packag Manuf 1(9):1350–1358CrossRef Liu H, Salomonsen G, Wang K et al (2011) Wafer-level Cu/Sn to Cu/Sn SLID-bonded interconnects with increased strength. IEEE Trans Comput Packag Manuf 1(9):1350–1358CrossRef
20.
go back to reference Klumpp A, Merkel R, Ramm P et al (2004) Vertical system integration by using inter-chip vias and solid-liquid interdiffusion bonding. Jpn J Appl Phys 43(7A):L829–L830CrossRef Klumpp A, Merkel R, Ramm P et al (2004) Vertical system integration by using inter-chip vias and solid-liquid interdiffusion bonding. Jpn J Appl Phys 43(7A):L829–L830CrossRef
21.
go back to reference Wieland R, Bonfert D, Klumpp A et al (2005) 3D integration of CMOS transistors with ICV-SLID technology. Microelectron Eng 82(3/4):529–533CrossRef Wieland R, Bonfert D, Klumpp A et al (2005) 3D integration of CMOS transistors with ICV-SLID technology. Microelectron Eng 82(3/4):529–533CrossRef
22.
go back to reference Pouranvari M, Ekrami A, Kokabi AH (2009) Effect of bonding temperature on microstructure development during TLP bonding of a nickel base superalloy. J Alloy Compd 469(1/2):270–275CrossRef Pouranvari M, Ekrami A, Kokabi AH (2009) Effect of bonding temperature on microstructure development during TLP bonding of a nickel base superalloy. J Alloy Compd 469(1/2):270–275CrossRef
23.
go back to reference Gale WF (1999) Applying TLP bonding to the joining of structural intermetallic compounds. JOM 51(2):49–52CrossRef Gale WF (1999) Applying TLP bonding to the joining of structural intermetallic compounds. JOM 51(2):49–52CrossRef
24.
go back to reference Tollefsen TA, Taklo MMV, Aasmundtveit KE et al (2012) Reliable HT electronic packaging—optimization of a Au-Sn SLID joint. In: Electronics system integration technologies conference (ESTC). doi:10.1109/ESTC.2012.6542138 Tollefsen TA, Taklo MMV, Aasmundtveit KE et al (2012) Reliable HT electronic packaging—optimization of a Au-Sn SLID joint. In: Electronics system integration technologies conference (ESTC). doi:10.​1109/​ESTC.​2012.​6542138
25.
go back to reference Welch WC, Najafi K (2007) Nickel-tin transient liquid phase (TLP) wafer bonding for MEMS vacuum packaging. In: Solid-state sensors, actuators and microsystems conference. doi:10.1109/SENSOR.2007.4300385 Welch WC, Najafi K (2007) Nickel-tin transient liquid phase (TLP) wafer bonding for MEMS vacuum packaging. In: Solid-state sensors, actuators and microsystems conference. doi:10.​1109/​SENSOR.​2007.​4300385
26.
go back to reference Welch WC, Najafi K (2008) Gold-indium transient liquid phase (TLP) wafer bonding for MEMS vacuum packaging. In: Micro electro mechanical systems (MEMS 2008), Tucson, AZ, 13–17 Jan 2008, pp 806–809 Welch WC, Najafi K (2008) Gold-indium transient liquid phase (TLP) wafer bonding for MEMS vacuum packaging. In: Micro electro mechanical systems (MEMS 2008), Tucson, AZ, 13–17 Jan 2008, pp 806–809
27.
go back to reference Welch WC, Junseok C, Najafi K (2005) Transfer of metal MEMS packages using a wafer-level solder transfer technique. IEEE Trans Adv Packag 28(4):643–649CrossRef Welch WC, Junseok C, Najafi K (2005) Transfer of metal MEMS packages using a wafer-level solder transfer technique. IEEE Trans Adv Packag 28(4):643–649CrossRef
28.
go back to reference Vivek C, Ho BY, Gao S (2012) Development of metallic hermetic sealing for MEMS packaging for harsh environment applications. J Eletron Mater 41(8):2256–2266CrossRef Vivek C, Ho BY, Gao S (2012) Development of metallic hermetic sealing for MEMS packaging for harsh environment applications. J Eletron Mater 41(8):2256–2266CrossRef
29.
go back to reference Marauska S, Claus M, Lisec T et al (2012) Low temperature transient liquid phase bonding of Au/Sn and Cu/Sn electroplated material systems for MEMS wafer-level packaging. Microsyst Technol 19(8):1119–1130CrossRef Marauska S, Claus M, Lisec T et al (2012) Low temperature transient liquid phase bonding of Au/Sn and Cu/Sn electroplated material systems for MEMS wafer-level packaging. Microsyst Technol 19(8):1119–1130CrossRef
30.
go back to reference Zhou Y, Gale WF, North TH (1995) Modelling of transient liquid phase bonding. Int Mater Rev 40(5):181–196CrossRef Zhou Y, Gale WF, North TH (1995) Modelling of transient liquid phase bonding. Int Mater Rev 40(5):181–196CrossRef
31.
32.
go back to reference Fürtauer S, Li D, Cupid D et al (2013) The Cu-Sn phase diagram, part I: new experimental results. Intermetallics 34:142–147CrossRef Fürtauer S, Li D, Cupid D et al (2013) The Cu-Sn phase diagram, part I: new experimental results. Intermetallics 34:142–147CrossRef
33.
go back to reference Lueck MR, Reed JD, Gregory CW et al (2012) High-density large-area-array interconnects formed by low-temperature Cu/Sn-Cu bonding for three-dimensional integrated circuits. IEEE Trans Electron Dev 59(7):1941–1947CrossRef Lueck MR, Reed JD, Gregory CW et al (2012) High-density large-area-array interconnects formed by low-temperature Cu/Sn-Cu bonding for three-dimensional integrated circuits. IEEE Trans Electron Dev 59(7):1941–1947CrossRef
34.
go back to reference MacDonald WD, Eagar TW (1992) Transient liquid phase bonding. Annu Rev Mater Sci 22:23–46CrossRef MacDonald WD, Eagar TW (1992) Transient liquid phase bonding. Annu Rev Mater Sci 22:23–46CrossRef
35.
go back to reference Bader S, Gust W, Hieber H (1995) Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems. Acta Metall Mater 43(1):329–337 Bader S, Gust W, Hieber H (1995) Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems. Acta Metall Mater 43(1):329–337
36.
go back to reference Song JM, Shen YL, Su CW et al (2009) Strain rate dependence on nanoindentation responses of interfacial intermetallic compounds in electronic solder joints with Cu and Ag substrates. Mater Trans 50(5):1231–1234 Song JM, Shen YL, Su CW et al (2009) Strain rate dependence on nanoindentation responses of interfacial intermetallic compounds in electronic solder joints with Cu and Ag substrates. Mater Trans 50(5):1231–1234
37.
go back to reference Balakrisnan B, Chum CC, Li M et al (2003) Fracture toughness of Cu-Sn intermetallic thin films. J Electron Mater 32(3):166–171CrossRef Balakrisnan B, Chum CC, Li M et al (2003) Fracture toughness of Cu-Sn intermetallic thin films. J Electron Mater 32(3):166–171CrossRef
38.
go back to reference Ghosh G (2004) Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J Mater Res 19(5):1439–1454CrossRef Ghosh G (2004) Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J Mater Res 19(5):1439–1454CrossRef
Metadata
Title
Wafer-level SLID bonding for MEMS encapsulation
Authors
H. Xu
T. Suni
V. Vuorinen
J. Li
H. Heikkinen
P. Monnoyer
M. Paulasto-Kröckel
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Advances in Manufacturing / Issue 3/2013
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-013-0035-0

Other articles of this Issue 3/2013

Advances in Manufacturing 3/2013 Go to the issue

Premium Partners