Skip to main content
Top

2024 | OriginalPaper | Chapter

Wave Propagation and Manipulation in Sierpinski Fractal Phononic Crystals

Authors : Victor Gustavo Ramos Costa Dos Santos, Edson Jansen Pedrosa de Miranda Jr., José Maria Campos Dos Santos

Published in: Proceedings of the 8th International Symposium on Solid Mechanics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the study of wave propagation in heterogeneous elastic and acoustic media, with a particular focus on phononic crystals (PnC) and their ability to create frequency bands called band gaps. It explores the unique properties of Sierpinski fractal phononic crystals and the impact of fractal-shaped inclusions on their band structures. The work introduces Locally Resonant Phononic Crystals (LRPnC), which combine locally resonant inclusions with PnC, leading to promising applications such as vibration attenuation and soundproofing. The mathematical formulation using the Plane Wave Expansion (PWE) method is detailed, and the results show the formation of band gaps and the influence of fractal hierarchical order on wave attenuation. The chapter concludes with a discussion on the potential applications and future research directions in this field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
1.
go back to reference Gupta, A.: A review on sonic crystal, its applications and numerical analysis techniques. Acoust. Phys. 60, 223–234 (2014)CrossRef Gupta, A.: A review on sonic crystal, its applications and numerical analysis techniques. Acoust. Phys. 60, 223–234 (2014)CrossRef
2.
go back to reference Spiousas, I., Etchemendy, P.E., Vergara, R.O., Calcagno, E.R., Eguia, M.C.: An auditory illusion of proximity of the source induced by sonic crystals. PLoS ONE 10(7) (2015) Spiousas, I., Etchemendy, P.E., Vergara, R.O., Calcagno, E.R., Eguia, M.C.: An auditory illusion of proximity of the source induced by sonic crystals. PLoS ONE 10(7) (2015)
3.
go back to reference Arjunan, A., Baroutaji, A., Robinson, J.: Advances in acoustic metamaterials. In: Encyclopedia of Smart Materials, pp. 1–10. Elsevier (2022). ISBN 9780128157336 Arjunan, A., Baroutaji, A., Robinson, J.: Advances in acoustic metamaterials. In: Encyclopedia of Smart Materials, pp. 1–10. Elsevier (2022). ISBN 9780128157336
4.
go back to reference Lima, V.D., Villani, L.G.G., Camino, J.F., Arruda, J.R.F.: Band gap optimization of one-dimension elastic waveguides using spatial Fourier plane wave expansion coefficients. Proc. Inst. Mech. Eng. Part-C J. Mech. Eng. Sci. 235(14), 2594–2609 (2021)CrossRef Lima, V.D., Villani, L.G.G., Camino, J.F., Arruda, J.R.F.: Band gap optimization of one-dimension elastic waveguides using spatial Fourier plane wave expansion coefficients. Proc. Inst. Mech. Eng. Part-C J. Mech. Eng. Sci. 235(14), 2594–2609 (2021)CrossRef
5.
go back to reference Beli, D., Ruzenne, M., De Marqui Jr, C.: Bridging coupling phenomenon in linear elastic metamaterials by exploiting locally resonant metachain isomers. Phys. Rev. Appl. 14(3), 034032 (2020)CrossRef Beli, D., Ruzenne, M., De Marqui Jr, C.: Bridging coupling phenomenon in linear elastic metamaterials by exploiting locally resonant metachain isomers. Phys. Rev. Appl. 14(3), 034032 (2020)CrossRef
6.
go back to reference Miranda Jr., E.J.P., Angelin, A.F., Silva, F.M., Dos Santos, J.M.C.: Passive vibration control using a metaconcrete thin plate. Cerâmica 65(Suppl. 1), 27–33 (2019) Miranda Jr., E.J.P., Angelin, A.F., Silva, F.M., Dos Santos, J.M.C.: Passive vibration control using a metaconcrete thin plate. Cerâmica 65(Suppl. 1), 27–33 (2019)
7.
go back to reference Yip, K.L.S., John, S.: Acoustic modes of locally resonant phononic crystals: comparison with frequency-dependent mass models. Phys. Rev. B Am. Phys. Soc. 103, 094304 (2021)CrossRef Yip, K.L.S., John, S.: Acoustic modes of locally resonant phononic crystals: comparison with frequency-dependent mass models. Phys. Rev. B Am. Phys. Soc. 103, 094304 (2021)CrossRef
8.
go back to reference Goffaux, C., Sánchez-Dehesa, J., Levy Yeyati, A.: Evidence of fano-like interference phenomena in locally resonant materials. Phys. Rev. Lett. 88(22), 225502 (2002)CrossRef Goffaux, C., Sánchez-Dehesa, J., Levy Yeyati, A.: Evidence of fano-like interference phenomena in locally resonant materials. Phys. Rev. Lett. 88(22), 225502 (2002)CrossRef
9.
go back to reference Huang, J., Shi, Z., Huang, W.: Multiple band gaps of phononic crystals with quasi-Sierpinski carpet unit cells. Physica B 516, 48–54 (2017)CrossRef Huang, J., Shi, Z., Huang, W.: Multiple band gaps of phononic crystals with quasi-Sierpinski carpet unit cells. Physica B 516, 48–54 (2017)CrossRef
10.
go back to reference Kuo, N.K., Piazza, G.: Fractal phononic crystals in aluminum nitride: an approach to ultra high frequency bandgap. Appl. Phys. Lett. 99 (2011) Kuo, N.K., Piazza, G.: Fractal phononic crystals in aluminum nitride: an approach to ultra high frequency bandgap. Appl. Phys. Lett. 99 (2011)
11.
go back to reference Liu, X.J., Fan, Y.H., An, Y.M.: The influence of T-square fractal shape holes on the band structure of two-dimensional phononic crystals. Physica B 429, 73–78 (2013)CrossRef Liu, X.J., Fan, Y.H., An, Y.M.: The influence of T-square fractal shape holes on the band structure of two-dimensional phononic crystals. Physica B 429, 73–78 (2013)CrossRef
12.
go back to reference Khouloud, S., Ketata, H., Ben Ghozlen, M.: Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice. Opt. Quantum Electron. 51, 1–14 (2019) Khouloud, S., Ketata, H., Ben Ghozlen, M.: Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice. Opt. Quantum Electron. 51, 1–14 (2019)
13.
go back to reference Cao, Y., Hou, Z., Liu, Y.: Convergence problem of plane-wave expansion method for phononic crystals. Phys. Lett. A 327(2–3), 247–253 (2004)CrossRef Cao, Y., Hou, Z., Liu, Y.: Convergence problem of plane-wave expansion method for phononic crystals. Phys. Lett. A 327(2–3), 247–253 (2004)CrossRef
14.
go back to reference Sigalas, M.M., Economou, E.N.: Elastic and acoustic wave band structure. J. Sound Vibr. 158(2), 377–382 (1992)CrossRef Sigalas, M.M., Economou, E.N.: Elastic and acoustic wave band structure. J. Sound Vibr. 158(2), 377–382 (1992)CrossRef
15.
go back to reference Kushwaha, M.S., Halevi, P., Martinez, G.: Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 49(4), 2313 (1994)CrossRef Kushwaha, M.S., Halevi, P., Martinez, G.: Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 49(4), 2313 (1994)CrossRef
16.
go back to reference Dal Poggeto, V.F., Serpa, A.L.: Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method. Int. J. Mech. Sci. 184, 105841 (2020)CrossRef Dal Poggeto, V.F., Serpa, A.L.: Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method. Int. J. Mech. Sci. 184, 105841 (2020)CrossRef
17.
go back to reference Perfect, E., Gentry, R.W., Sukop, M.C., Lawson, J.E.: Multifractal Sierpinski carpets: theory and application to upscaling effective saturated hydraulic conductivity. Geoderma 134(3–4), 240–252 (2006)CrossRef Perfect, E., Gentry, R.W., Sukop, M.C., Lawson, J.E.: Multifractal Sierpinski carpets: theory and application to upscaling effective saturated hydraulic conductivity. Geoderma 134(3–4), 240–252 (2006)CrossRef
18.
19.
go back to reference Barlow, M.T., Bass, R.F.: The construction of brownian motion on the Sierpinski carpet. In: Annales de l’I.H.P. Probabilités et statistiques, no. 3, pp. 225–257. Tome 25 (1989) Barlow, M.T., Bass, R.F.: The construction of brownian motion on the Sierpinski carpet. In: Annales de l’I.H.P. Probabilités et statistiques, no. 3, pp. 225–257. Tome 25 (1989)
20.
go back to reference Huang, J., Ruzzene, M., Chen, S.: Analysis of in-plane wave propagation in periodic structures with Sierpinski carpet unit cells. J. Sound Vibr. 395, 127–141 (2017)CrossRef Huang, J., Ruzzene, M., Chen, S.: Analysis of in-plane wave propagation in periodic structures with Sierpinski carpet unit cells. J. Sound Vibr. 395, 127–141 (2017)CrossRef
21.
go back to reference Shackelford, J.F., Alexander, W.: Materials Science and Enginnering Handbook, 3th edn. CRC Press LLC (2001) Shackelford, J.F., Alexander, W.: Materials Science and Enginnering Handbook, 3th edn. CRC Press LLC (2001)
22.
go back to reference Vasseur, J.O., Djafari-Rouhani, B., Dobrzynski, L., Kushwaha, M.S., Halevi, P.: Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems. J. Phys. Condens. Matter 6(42), 8759–8770 (1994)CrossRef Vasseur, J.O., Djafari-Rouhani, B., Dobrzynski, L., Kushwaha, M.S., Halevi, P.: Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems. J. Phys. Condens. Matter 6(42), 8759–8770 (1994)CrossRef
23.
go back to reference Zheng, L.: Granular monolayers: wave dynamics and topological properties. Acoustics Université du Maine (2017) Zheng, L.: Granular monolayers: wave dynamics and topological properties. Acoustics Université du Maine (2017)
24.
go back to reference Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals. Princeton University Press, Princeton (1995) Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals. Princeton University Press, Princeton (1995)
25.
go back to reference Alhammadi, A., et al.: Numerical modelling and optimization of two-dimensional phononic band gaps in elastic metamaterials with square inclusions. Appl. Sci. 11, 3124 (2021)CrossRef Alhammadi, A., et al.: Numerical modelling and optimization of two-dimensional phononic band gaps in elastic metamaterials with square inclusions. Appl. Sci. 11, 3124 (2021)CrossRef
Metadata
Title
Wave Propagation and Manipulation in Sierpinski Fractal Phononic Crystals
Authors
Victor Gustavo Ramos Costa Dos Santos
Edson Jansen Pedrosa de Miranda Jr.
José Maria Campos Dos Santos
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59804-3_10

Premium Partners