Skip to main content
Top

2024 | OriginalPaper | Chapter

Weak \(\beta \)-Kenmotsu Manifolds and \(\eta \)-Ricci Solitons

Authors : Dhriti Sundar Patra, Vladimir Rovenski

Published in: Differential Geometric Structures and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Weak contact metric structures on a smooth manifold have been recently introduced by V. Rovenski and R. Wolak in 2022. In this paper, we define a new structure of this kind called a weak \(\beta \)-Kenmotsu structure (that generalizes the notion by K. Kenmotsu with \(\beta =1\) and its extension for \(\beta \ne 0\) by Z. Olszak). We show that a weak \(\beta \)-Kenmotsu manifold is locally the warped product \((-\varepsilon ,\varepsilon )\times _\sigma \bar{M}\), where \((\partial _t\,\sigma )/\sigma =\beta \ne 0\), and \((\bar{M},\bar{g})\) is equipped with a parallel skew-symmetric (1,1)-tensor \(\bar{\phi }\) such that \(\bar{\phi }^{\,2}\) is negative definite. Then, we show that an \(\eta \)-Einstein weak \(\beta \)-Kenmotsu manifold with \(\beta =const\ne 0\) admitting an \(\eta \)-Ricci soliton structure is an Einstein manifold. Finally, we prove that a weak \(\beta \)-Kenmotsu manifold and admitting an \(\eta \)-Ricci soliton structure, whose non-zero potential vector field is weak contact or is collinear to \(\xi \), is an Einstein manifold.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blair, D.: Riemannian geometry of contact and symplectic manifolds, 2nd ed. Progress in Mathematics, vol. 203, Birkhäuser, 2010 Blair, D.: Riemannian geometry of contact and symplectic manifolds, 2nd ed. Progress in Mathematics, vol. 203, Birkhäuser, 2010
2.
go back to reference Chen, B.-Y.: Differential Geometry of Warped Product Manifolds and Submanifolds, World Sci. Publ., 2017 Chen, B.-Y.: Differential Geometry of Warped Product Manifolds and Submanifolds, World Sci. Publ., 2017
3.
go back to reference Cho, J. and Kimura, M.: Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61(2), 205–212 (2009)MathSciNetCrossRef Cho, J. and Kimura, M.: Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61(2), 205–212 (2009)MathSciNetCrossRef
4.
go back to reference Ellis, G.F.R. and Hawking, S.W.: The large scale structure of space-time, vol. 1. Cambridge University Press, Cambridge, 1973 Ellis, G.F.R. and Hawking, S.W.: The large scale structure of space-time, vol. 1. Cambridge University Press, Cambridge, 1973
5.
go back to reference Ghosh, A.: Ricci soliton and Ricci almost soliton within the framework of Kenmotsu manifold, Carpathian Math. Publ., 11(1), 59–69, (2019)MathSciNetCrossRef Ghosh, A.: Ricci soliton and Ricci almost soliton within the framework of Kenmotsu manifold, Carpathian Math. Publ., 11(1), 59–69, (2019)MathSciNetCrossRef
6.
go back to reference Ghosh, A.: K-contact and \((k,\mu )\)-contact metric as a generalized \(\eta \)-Ricci soliton, Math. Slovaca 73, No. 1, 185–194 (2023)MathSciNet Ghosh, A.: K-contact and \((k,\mu )\)-contact metric as a generalized \(\eta \)-Ricci soliton, Math. Slovaca 73, No. 1, 185–194 (2023)MathSciNet
8.
go back to reference Herrera, A.C.: Parallel skew-symmetric tensors on 4-dimensional metric Lie algebras. Revista de la Unión Matemática Argentina, 65(2), 295–311, (2023) Herrera, A.C.: Parallel skew-symmetric tensors on 4-dimensional metric Lie algebras. Revista de la Unión Matemática Argentina, 65(2), 295–311, (2023)
9.
go back to reference Kiran Kumar, D.L. and Nagaraja, H.G.: Second order parallel tensor and Ricci solitons on generalized \((k;\mu )\)-space forms, Mathematical Advances in Pure and Applied Sciences, 2019, Vol. 2, No. 1, 1–7 Kiran Kumar, D.L. and Nagaraja, H.G.: Second order parallel tensor and Ricci solitons on generalized \((k;\mu )\)-space forms, Mathematical Advances in Pure and Applied Sciences, 2019, Vol. 2, No. 1, 1–7
10.
go back to reference Olszak, Z.: Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen, 39(3-4) (1991), 315–323MathSciNet Olszak, Z.: Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen, 39(3-4) (1991), 315–323MathSciNet
11.
go back to reference Patra, D.S. and Rovenski V.: Almost \(\eta \)-Ricci solitons on Kenmotsu manifolds, European J. of Mathematics, 7 (2021), 1753–1766MathSciNetCrossRef Patra, D.S. and Rovenski V.: Almost \(\eta \)-Ricci solitons on Kenmotsu manifolds, European J. of Mathematics, 7 (2021), 1753–1766MathSciNetCrossRef
12.
go back to reference Patra, D.S. and Rovenski, V.: On the rigidity of the Sasakian structure and characterization of cosymplectic manifolds, Differential Geometry and its Applications, 90 (2023) 102043MathSciNetCrossRef Patra, D.S. and Rovenski, V.: On the rigidity of the Sasakian structure and characterization of cosymplectic manifolds, Differential Geometry and its Applications, 90 (2023) 102043MathSciNetCrossRef
13.
go back to reference Rovenski, V. and Wolak, R.: New metric structures on \(\mathfrak{g}\)-foliations, Indagationes Mathematicae, 33 (2022), 518–532 Rovenski, V. and Wolak, R.: New metric structures on \(\mathfrak{g}\)-foliations, Indagationes Mathematicae, 33 (2022), 518–532
15.
go back to reference Yano, K.: Integral formulas in Riemannian geometry, Vol. 1. M. Dekker, 1970 Yano, K.: Integral formulas in Riemannian geometry, Vol. 1. M. Dekker, 1970
16.
go back to reference Yano, K. and Kon, K.: Structures on manifolds, Series in Pure Mathematics, 3, World Scientific Pub. Co., Singapore, 1984 Yano, K. and Kon, K.: Structures on manifolds, Series in Pure Mathematics, 3, World Scientific Pub. Co., Singapore, 1984
Metadata
Title
Weak -Kenmotsu Manifolds and -Ricci Solitons
Authors
Dhriti Sundar Patra
Vladimir Rovenski
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50586-7_3

Premium Partner