Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-Propagation

Authors : Shiqi Peng, Bolin Lai, Guangyu Yao, Xiaoyun Zhang, Ya Zhang, Yan-Feng Wang, Hui Zhao

Published in: Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data

Publisher: Springer International Publishing

share
SHARE

Abstract

Vertebral body (VB) segmentation is an important preliminary step towards medical visual diagnosis for spinal diseases. However, most previous works require pixel/voxel-wise strong supervisions, which is expensive, tedious and time-consuming for experts to annotate. In this paper, we propose a Weakly supervised Iterative Spinal Segmentation (WISS) method leveraging only four corner landmark weak labels on a single sagittal slice to achieve automatic volumetric segmentation from CT images for VBs. WISS first segments VBs on an annotated sagittal slice in an iterative self-training manner. This self-training method alternates between training and refining labels in the training set. Then WISS proceeds to segment the whole VBs slice by slice with a slice-propagation method to obtain volumetric segmentations. We evaluate the performance of WISS on a private spinal metastases CT dataset and the public lumbar CT dataset. On the first dataset, WISS achieves distinct improvements with regard to two different backbones. For the second dataset, WISS achieves dice coefficients of \(91.7\%\) and \(83.7\%\) for mid-sagittal slices and 3D CT volumes, respectively, saving a lot of labeling costs and only sacrificing a little segmentation performance.
Literature
1.
go back to reference Ali, A.M., Aslan, M.S., Farag, A.A.: Vertebral body segmentation with prior shape constraints for accurate BMD measurements. Comput. Med. Imaging Graph. 38(7), 586–595 (2014) CrossRef Ali, A.M., Aslan, M.S., Farag, A.A.: Vertebral body segmentation with prior shape constraints for accurate BMD measurements. Comput. Med. Imaging Graph. 38(7), 586–595 (2014) CrossRef
2.
go back to reference Cai, J., et al.: Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3D mask generation from 2D RECIST. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 396–404. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-00937-3_​46 CrossRef Cai, J., et al.: Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3D mask generation from 2D RECIST. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 396–404. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-00937-3_​46 CrossRef
3.
go back to reference Chu, C., Belavỳ, D.L., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Fully automatic localization and segmentation of 3d vertebral bodies from CT/MR images via a learning-based method. PLoS ONE 10(11), e0143327 (2015) CrossRef Chu, C., Belavỳ, D.L., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Fully automatic localization and segmentation of 3d vertebral bodies from CT/MR images via a learning-based method. PLoS ONE 10(11), e0143327 (2015) CrossRef
4.
go back to reference Gutman, D., et al.: Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:​1605.​01397 (2016) Gutman, D., et al.: Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:​1605.​01397 (2016)
5.
go back to reference He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017) He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
6.
go back to reference Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 33(4), 861–874 (2014) CrossRef Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 33(4), 861–874 (2014) CrossRef
7.
go back to reference Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109–117 (2011) Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109–117 (2011)
8.
go back to reference Lee, H.W., Kim, N.R., Lee, J.H.: Deep neural network self-training based on unsupervised learning and dropout. Int. J. Fuzzy Logic Intell. Syst. 17(1), 1–9 (2017) CrossRef Lee, H.W., Kim, N.R., Lee, J.H.: Deep neural network self-training based on unsupervised learning and dropout. Int. J. Fuzzy Logic Intell. Syst. 17(1), 1–9 (2017) CrossRef
9.
go back to reference Lessmann, N., van Ginneken, B., de Jong, P.A., Išgum, I.: Iterative fully convolutional neural networks for automatic vertebra segmentation. arXiv preprint arXiv:​1804.​04383 (2018) Lessmann, N., van Ginneken, B., de Jong, P.A., Išgum, I.: Iterative fully convolutional neural networks for automatic vertebra segmentation. arXiv preprint arXiv:​1804.​04383 (2018)
12.
go back to reference Štern, D., Likar, B., Pernuš, F., Vrtovec, T.: Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys. Med. Biol. 56(23), 7505 (2011) CrossRef Štern, D., Likar, B., Pernuš, F., Vrtovec, T.: Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys. Med. Biol. 56(23), 7505 (2011) CrossRef
Metadata
Title
Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-Propagation
Authors
Shiqi Peng
Bolin Lai
Guangyu Yao
Xiaoyun Zhang
Ya Zhang
Yan-Feng Wang
Hui Zhao
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-33391-1_14

Premium Partner