Skip to main content
Top

2019 | OriginalPaper | Chapter

14. Wear of Tires

Author : Yukio Nakajima

Published in: Advanced Tire Mechanics

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wear is phenomenologically characterized by not only physical factors, such as fracture, but also chemical factors, such as oxidization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Problem 14.1.
 
2
See Footnote 1.
 
3
Same as Eq. (11.​4).
 
4
Same as Eq. (11.​5).
 
5
Note 14.1.
 
6
See Footnote 5.
 
7
Note 14.2.
 
8
See Footnote 7.
 
9
Note 14.3.
 
10
Note 14.4.
 
11
Note 14.5.
 
12
Note 14.6.
 
13
Note 14.7.
 
14
See Footnote 13.
 
15
See Footnote 13.
 
16
See Footnote 13.
 
17
Note 14.8.
 
18
Note 14.9.
 
19
Same as Eq. (11.​72).
 
20
Note 14.10.
 
21
Note 14.11.
 
22
Note 14.12.
 
23
See Footnote 22.
 
24
Note 14.13.
 
Literature
1.
go back to reference Bridgestone (ed.), Fundamentals and Application of Vehicle Tires (in Japanese) (Tokyo Denki University Press, 2008) Bridgestone (ed.), Fundamentals and Application of Vehicle Tires (in Japanese) (Tokyo Denki University Press, 2008)
2.
go back to reference A. Schallamach, Friction and abrasion of rubber. Wear 1, 384–417 (1957–1958) A. Schallamach, Friction and abrasion of rubber. Wear 1, 384–417 (1957–1958)
3.
go back to reference A. Schallamach, Recent advances in knowledge of rubber friction and tire wear. Rubber Chem. Technol. 41, 209–244 (1968)CrossRef A. Schallamach, Recent advances in knowledge of rubber friction and tire wear. Rubber Chem. Technol. 41, 209–244 (1968)CrossRef
4.
go back to reference Y. Uchiyama, Development of the rubber friction and wear (in Japanese). Nippon Gomu Kyokaishi 80(4), 120–127 (2007)CrossRef Y. Uchiyama, Development of the rubber friction and wear (in Japanese). Nippon Gomu Kyokaishi 80(4), 120–127 (2007)CrossRef
5.
go back to reference S. Yamazaki et al., Indoor test procedures for evaluation of tire tread wear and influence of suspension alignment. Tire Sci. Technol. 17(4), 236–273 (1989)CrossRef S. Yamazaki et al., Indoor test procedures for evaluation of tire tread wear and influence of suspension alignment. Tire Sci. Technol. 17(4), 236–273 (1989)CrossRef
6.
go back to reference S. Yamazaki, Influence of drum curvature on tire tread wear in indoor tire wear testing (in Japanese). JARI Res. J. 19(4) (1997) S. Yamazaki, Influence of drum curvature on tire tread wear in indoor tire wear testing (in Japanese). JARI Res. J. 19(4) (1997)
7.
go back to reference H. Sakai, Study on wear of tire tread—friction and wear at large slip speed (in Japanese). Nippon Gomu Kyokaishi 68, 251–257 (1995)CrossRef H. Sakai, Study on wear of tire tread—friction and wear at large slip speed (in Japanese). Nippon Gomu Kyokaishi 68, 251–257 (1995)CrossRef
8.
go back to reference O.L. Maitre, et al., Evaluation of Tire Wear Performance, SAE Paper, No. 980256 (1998) O.L. Maitre, et al., Evaluation of Tire Wear Performance, SAE Paper, No. 980256 (1998)
9.
go back to reference A. Schallamach, D.M. Turner, Wear of slipping wheels. Wear 3, 1–25 (1960)CrossRef A. Schallamach, D.M. Turner, Wear of slipping wheels. Wear 3, 1–25 (1960)CrossRef
10.
go back to reference A.G. Veith, The Driving Severity Number (DSN)—a step toward quantifying treadwear test conditions. Tire Sci. Technol. 14(3), 139–159 (1986)CrossRef A.G. Veith, The Driving Severity Number (DSN)—a step toward quantifying treadwear test conditions. Tire Sci. Technol. 14(3), 139–159 (1986)CrossRef
11.
go back to reference P.S. Pillai, Friction and wear of tires, in Friction, Lubrication, and Wear Technology, ed. By P.J. Blau (ASM Handbook, 1992), vol. 18, pp. 578–581 P.S. Pillai, Friction and wear of tires, in Friction, Lubrication, and Wear Technology, ed. By P.J. Blau (ASM Handbook, 1992), vol. 18, pp. 578–581
12.
go back to reference H. Sakai, Study on wear of tire tread—friction and wear at small slip angle (in Japanese). Nippon Gomu Kyokaishi 68, 39–46 (1995)CrossRef H. Sakai, Study on wear of tire tread—friction and wear at small slip angle (in Japanese). Nippon Gomu Kyokaishi 68, 39–46 (1995)CrossRef
13.
go back to reference A.G. Veith, Accelerated tire wear under controlled conditions-II, Some factors that influence tire wear. Rubber Chem. Technol. 46, 821–842 (1973)CrossRef A.G. Veith, Accelerated tire wear under controlled conditions-II, Some factors that influence tire wear. Rubber Chem. Technol. 46, 821–842 (1973)CrossRef
14.
go back to reference A. Schallamach, The role of hysteresis in tire wear and laboratory abrasion. Rubber Chem. Technol. 33, 857–867 (1960)CrossRef A. Schallamach, The role of hysteresis in tire wear and laboratory abrasion. Rubber Chem. Technol. 33, 857–867 (1960)CrossRef
15.
go back to reference T. Mashita, Recent study on tire wear (in Japanese), in Symposium of Vehicle Dynamics and Tire, JSAE (1983) T. Mashita, Recent study on tire wear (in Japanese), in Symposium of Vehicle Dynamics and Tire, JSAE (1983)
16.
go back to reference M. Togashi, H. Mouri, Evaluation and technology for improvement on tire wear and irregular wear (in Japanese). Nippon Gomu Kyokaishi 69, 739–748 (1996)CrossRef M. Togashi, H. Mouri, Evaluation and technology for improvement on tire wear and irregular wear (in Japanese). Nippon Gomu Kyokaishi 69, 739–748 (1996)CrossRef
17.
go back to reference V.E. Gough, Stiffness of cord and rubber constructions. Rubber Chem. Technol. 41, 988–1021 (1968)CrossRef V.E. Gough, Stiffness of cord and rubber constructions. Rubber Chem. Technol. 41, 988–1021 (1968)CrossRef
18.
go back to reference S.K. Clark (ed.), Mechanics of Pneumatic Tire (U.S. Government Printing Office, 1981) S.K. Clark (ed.), Mechanics of Pneumatic Tire (U.S. Government Printing Office, 1981)
19.
go back to reference B.K. Daniels, A note on Gough stiffness and tread life. Tire Sci. Technol. 5(4), 226–231 (1977)CrossRef B.K. Daniels, A note on Gough stiffness and tread life. Tire Sci. Technol. 5(4), 226–231 (1977)CrossRef
20.
go back to reference H. Sakai, Tire Engineering (in Japanese) (Guranpuri-Shuppan, 1987) H. Sakai, Tire Engineering (in Japanese) (Guranpuri-Shuppan, 1987)
21.
go back to reference T. Fujikawa, S. Ymamazaki, Tire tread slip at actual vehicle speed. Trans. JSAE 26(3), 97–102 (1995) T. Fujikawa, S. Ymamazaki, Tire tread slip at actual vehicle speed. Trans. JSAE 26(3), 97–102 (1995)
22.
go back to reference J.J. Lazeration, An investigation of the slip of a tire tread. Tire Sci. Technol. 25(2), 78–95 (1997)CrossRef J.J. Lazeration, An investigation of the slip of a tire tread. Tire Sci. Technol. 25(2), 78–95 (1997)CrossRef
23.
go back to reference T. Fujikawa et al., Tire model to predict treadwear. Tire Sci. Technol. 27(2), 106–125 (1999)CrossRef T. Fujikawa et al., Tire model to predict treadwear. Tire Sci. Technol. 27(2), 106–125 (1999)CrossRef
24.
go back to reference Fujikoshi Corporation, in Technology seminar: Introduction to tribology, Machi-Business News, vol 7 (2005) Fujikoshi Corporation, in Technology seminar: Introduction to tribology, Machi-Business News, vol 7 (2005)
25.
go back to reference T. Hanzaka, Y. Nakajima, Physical Wear Model on Wear Progress of Irregular Wear of Tires (Case of River Wear of Truck & Bus Tires) (FISITA World Automotive Congress, Busan, 2016) T. Hanzaka, Y. Nakajima, Physical Wear Model on Wear Progress of Irregular Wear of Tires (Case of River Wear of Truck & Bus Tires) (FISITA World Automotive Congress, Busan, 2016)
26.
go back to reference S. Yamazaki et al., Indoor test procedures for evaluation of tire treadwear and influence of suspension alignment. Tire Sci. Technol. 17(4), 236–273 (1989)CrossRef S. Yamazaki et al., Indoor test procedures for evaluation of tire treadwear and influence of suspension alignment. Tire Sci. Technol. 17(4), 236–273 (1989)CrossRef
27.
go back to reference S. Yamazaki et al., Influences of toe and camber angie on tire wear (in Japanese). JARI Res. J. 9(12), 473–476 (1987) S. Yamazaki et al., Influences of toe and camber angie on tire wear (in Japanese). JARI Res. J. 9(12), 473–476 (1987)
28.
go back to reference S. Kohmura et al., in Estimation Method of Tire Tread Wear on a Vehicle, SAE Paper, No. 910168 (1991) S. Kohmura et al., in Estimation Method of Tire Tread Wear on a Vehicle, SAE Paper, No. 910168 (1991)
29.
go back to reference W.K. Shepherd, Diagonal wear predicted by a simple wear model, in The Tire Pavement Interface, ed. by M.G. Pottinger, T.J. Yager, ASTM STP 929, American Society for Testing and Materials (1986), pp. 159–179 W.K. Shepherd, Diagonal wear predicted by a simple wear model, in The Tire Pavement Interface, ed. by M.G. Pottinger, T.J. Yager, ASTM STP 929, American Society for Testing and Materials (1986), pp. 159–179
30.
go back to reference A. Sueoka et al., Polygonal wear of automobile tires (in Japanese). Trans. JSME (C) 62(600), 3145–3152 (1996)CrossRef A. Sueoka et al., Polygonal wear of automobile tires (in Japanese). Trans. JSME (C) 62(600), 3145–3152 (1996)CrossRef
31.
go back to reference A. Sueoka et al., Polygonal wear of automobile tires. JSME Int. J. (C) 40(2), 209–217 (1997)CrossRef A. Sueoka et al., Polygonal wear of automobile tires. JSME Int. J. (C) 40(2), 209–217 (1997)CrossRef
32.
go back to reference H. Sakai, Friction and wear of tire tread rubber. Tire Sci. Technol. 24(3), 252–275 (1996)CrossRef H. Sakai, Friction and wear of tire tread rubber. Tire Sci. Technol. 24(3), 252–275 (1996)CrossRef
33.
go back to reference C. Wright et al., Laboratory tire wear simulation derived from computer modeling of suspension dynamics. Tire Sci. Technol. 19(3), 122–141 (1991)CrossRef C. Wright et al., Laboratory tire wear simulation derived from computer modeling of suspension dynamics. Tire Sci. Technol. 19(3), 122–141 (1991)CrossRef
34.
go back to reference S. Yamazaki, Evaluation method of friction and wear, and points to consider (in Japanese). Nippon Gomu Kyokaishi 74(1), 12–17 (2001)CrossRef S. Yamazaki, Evaluation method of friction and wear, and points to consider (in Japanese). Nippon Gomu Kyokaishi 74(1), 12–17 (2001)CrossRef
35.
go back to reference D.O. Stalnaker et al., Indoor simulation of tire wear: some case studies. Tire Sci. Technol. 24(2), 94–118 (1996)CrossRef D.O. Stalnaker et al., Indoor simulation of tire wear: some case studies. Tire Sci. Technol. 24(2), 94–118 (1996)CrossRef
36.
go back to reference D.O. Stalnaker, J.L. Turner, Vehicle and course characterization process for indoor tire wear simulation. Tire Sci. Technol. 30(2), 100–121 (2002)CrossRef D.O. Stalnaker, J.L. Turner, Vehicle and course characterization process for indoor tire wear simulation. Tire Sci. Technol. 30(2), 100–121 (2002)CrossRef
37.
go back to reference E.F. Knuth et al., Advances in Indoor Tire Tread Wear Simulation, SAE Paper, No. 2006-01-1447 (2006) E.F. Knuth et al., Advances in Indoor Tire Tread Wear Simulation, SAE Paper, No. 2006-01-1447 (2006)
38.
go back to reference R. Loh, F. Nohl, in Multiaxial Wheel Transducer, Application and Results, VDI Berichte, No. 741 (1989) R. Loh, F. Nohl, in Multiaxial Wheel Transducer, Application and Results, VDI Berichte, No. 741 (1989)
39.
go back to reference H. Lupker et al., Numerical prediction of car tire wear. Tire Sci. Technol. 32(3), 164–186 (2004)CrossRef H. Lupker et al., Numerical prediction of car tire wear. Tire Sci. Technol. 32(3), 164–186 (2004)CrossRef
40.
go back to reference H. Kobayashi et al., Estimation method of tread wear life (in Japanese). Toyota Tech. Rev. 50(1), 50–55 (2000) H. Kobayashi et al., Estimation method of tread wear life (in Japanese). Toyota Tech. Rev. 50(1), 50–55 (2000)
41.
go back to reference D. Zheng, Prediction of tire tread wear with FEM steady state rolling contact simulation. Tire Sci. Technol. 31(3), 189–202 (2003)CrossRef D. Zheng, Prediction of tire tread wear with FEM steady state rolling contact simulation. Tire Sci. Technol. 31(3), 189–202 (2003)CrossRef
42.
go back to reference J.C. Cho, B.C. Jung, Prediction of tread pattern wear by an explicit finite element model. Tire Sci. Technol. 35(4), 276–299 (2007)CrossRef J.C. Cho, B.C. Jung, Prediction of tread pattern wear by an explicit finite element model. Tire Sci. Technol. 35(4), 276–299 (2007)CrossRef
43.
go back to reference S. Yamazaki, Evaluation procedures and properties of tire treadwear (in Japanese). Jidosha Kenkyu 13(4), 116–126 (1991) S. Yamazaki, Evaluation procedures and properties of tire treadwear (in Japanese). Jidosha Kenkyu 13(4), 116–126 (1991)
44.
go back to reference T. Fujikawa, S. Yamazaki, Tire tread slip at actual vehicle speed (in Japanese). Jidosha Kenkyu 16(5), 178–181 (1994) T. Fujikawa, S. Yamazaki, Tire tread slip at actual vehicle speed (in Japanese). Jidosha Kenkyu 16(5), 178–181 (1994)
45.
go back to reference S. Knisley, A correlation between rolling tire contact friction energy and indoor tread wear. Tire Sci. Technol. 30(2), 83–99 (2002)MathSciNetCrossRef S. Knisley, A correlation between rolling tire contact friction energy and indoor tread wear. Tire Sci. Technol. 30(2), 83–99 (2002)MathSciNetCrossRef
47.
go back to reference A.A. Goldstein, Finite element analysis of a quasi-static rolling tire model for determination of truck tire forces and moments. Tire Sci. Technol. 24(4), 278–293 (1996)CrossRef A.A. Goldstein, Finite element analysis of a quasi-static rolling tire model for determination of truck tire forces and moments. Tire Sci. Technol. 24(4), 278–293 (1996)CrossRef
48.
go back to reference R. Gall et al., Some notes on the finite element analysis of tires. Tire Sci. Technol. 23(3), 175–188 (1995)CrossRef R. Gall et al., Some notes on the finite element analysis of tires. Tire Sci. Technol. 23(3), 175–188 (1995)CrossRef
49.
go back to reference Y. Kaji, in Improvements in Tire Wear Based on 3D Finite Element Analysis, Tire Technology EXPO (2003) Y. Kaji, in Improvements in Tire Wear Based on 3D Finite Element Analysis, Tire Technology EXPO (2003)
50.
go back to reference G. Meschke et al., 3D simulations of automobile tires: material modeling, mesh generation and solution strategies. Tire Sci. Technol. 25(3), 154–176 (1997)CrossRef G. Meschke et al., 3D simulations of automobile tires: material modeling, mesh generation and solution strategies. Tire Sci. Technol. 25(3), 154–176 (1997)CrossRef
51.
go back to reference E. Seta et al., Hydroplaning analysis by FEM and FVM: effect of tire rolling and tire pattern on hydroplaning. Tire Sci. Technol. 28(3), 140–156 (2000)CrossRef E. Seta et al., Hydroplaning analysis by FEM and FVM: effect of tire rolling and tire pattern on hydroplaning. Tire Sci. Technol. 28(3), 140–156 (2000)CrossRef
52.
go back to reference A. Becker, B. Seifert, Simulation of wear with a FE tyre model using a steady state rolling formulation. Contact Mechanics III (1997), pp. 119–128 A. Becker, B. Seifert, Simulation of wear with a FE tyre model using a steady state rolling formulation. Contact Mechanics III (1997), pp. 119–128
53.
go back to reference K.R. Smith et al., Prediction of tire profile wear by steady-state FEM. Tire Sci. Technol. 36(4), 290–303 (2008)CrossRef K.R. Smith et al., Prediction of tire profile wear by steady-state FEM. Tire Sci. Technol. 36(4), 290–303 (2008)CrossRef
54.
go back to reference J. Qi et al., Validation of a steady-state transport analysis for rolling treaded tires. Tire Sci. Technol. 35(3), 183–208 (2007)CrossRef J. Qi et al., Validation of a steady-state transport analysis for rolling treaded tires. Tire Sci. Technol. 35(3), 183–208 (2007)CrossRef
56.
go back to reference I. Zeid, J. Padovan, Finite element modeling of rolling contact. Comput. Struct. 14, 163–170 (1981)CrossRef I. Zeid, J. Padovan, Finite element modeling of rolling contact. Comput. Struct. 14, 163–170 (1981)CrossRef
57.
go back to reference J. Padovan, O. Paramadilok, Transient and steady state viscoelastic rolling contact. Comput. Struct. 20(1–3), 545–553 (1985)MATHCrossRef J. Padovan, O. Paramadilok, Transient and steady state viscoelastic rolling contact. Comput. Struct. 20(1–3), 545–553 (1985)MATHCrossRef
58.
go back to reference R. Kennedy, J. Padovan, Finite element analysis of a steady-state rotating tire subjected to a point load or ground contact. Tire Sci. Technol. 15(4), 243–260 (1987)CrossRef R. Kennedy, J. Padovan, Finite element analysis of a steady-state rotating tire subjected to a point load or ground contact. Tire Sci. Technol. 15(4), 243–260 (1987)CrossRef
59.
go back to reference J.T. Oden, T.L. Lin, On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Comput. Meth. Appl. Mech. Eng. 57, 297–376 (1986)MathSciNetMATHCrossRef J.T. Oden, T.L. Lin, On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Comput. Meth. Appl. Mech. Eng. 57, 297–376 (1986)MathSciNetMATHCrossRef
60.
go back to reference U. Nackenhorst, On the finite element analysis of steady state rolling contact, in Contact Mechanics-Computational Techniques, ed. by M.H. Aliabadi, C.A. Brebbia (Computational Mechanics Publication, Southampton, Boston, 1993), pp. 53–60 U. Nackenhorst, On the finite element analysis of steady state rolling contact, in Contact Mechanics-Computational Techniques, ed. by M.H. Aliabadi, C.A. Brebbia (Computational Mechanics Publication, Southampton, Boston, 1993), pp. 53–60
61.
go back to reference U. Nackenhorst, The ALE-formulation of bodies in rolling contact—theoretical foundations and finite element approach. Comput. Meth. Appl. Mech. Eng. 193, 4299–4432 (2004)MathSciNetMATHCrossRef U. Nackenhorst, The ALE-formulation of bodies in rolling contact—theoretical foundations and finite element approach. Comput. Meth. Appl. Mech. Eng. 193, 4299–4432 (2004)MathSciNetMATHCrossRef
62.
go back to reference M. Shiraishi et al., Simulation of dynamically rolling tire. Tire Sci. Technol. 28(4), 264–276 (2000)CrossRef M. Shiraishi et al., Simulation of dynamically rolling tire. Tire Sci. Technol. 28(4), 264–276 (2000)CrossRef
63.
go back to reference M. Koishi, Z. Shida, Multi-objective design problem of tire wear and visualization of its pareto solutions. Tire Sci. Technol. 34(3), 170–194 (2006)CrossRef M. Koishi, Z. Shida, Multi-objective design problem of tire wear and visualization of its pareto solutions. Tire Sci. Technol. 34(3), 170–194 (2006)CrossRef
64.
go back to reference J.R. Cho et al., Abrasive wear amount estimate for 3D patterned tire utilizing frictional dynamic rolling analysis. Tribo. Int. 44, 850–858 (2011)CrossRef J.R. Cho et al., Abrasive wear amount estimate for 3D patterned tire utilizing frictional dynamic rolling analysis. Tribo. Int. 44, 850–858 (2011)CrossRef
65.
66.
go back to reference K. Hofstetter et al., Sliding behaviour of simplified tire tread patterns investigated by means of FEM. Comp. Struct. 84, 1151–1163 (2006)CrossRef K. Hofstetter et al., Sliding behaviour of simplified tire tread patterns investigated by means of FEM. Comp. Struct. 84, 1151–1163 (2006)CrossRef
67.
go back to reference A.G. Veith, A review of important factors affecting treadwear. Rubber Chem. Technol. 65, 601–659 (1992)CrossRef A.G. Veith, A review of important factors affecting treadwear. Rubber Chem. Technol. 65, 601–659 (1992)CrossRef
68.
go back to reference A.G. Veith, Tire treadwear—the joint influence of compound properties and environmental factors. Tire Sci. Technol. 23(4), 212–237 (1995)CrossRef A.G. Veith, Tire treadwear—the joint influence of compound properties and environmental factors. Tire Sci. Technol. 23(4), 212–237 (1995)CrossRef
69.
go back to reference T. Fujikawa, Tire tread wear prediction by rubber pad wear test (in Japanese). Nippon Gomu Kyokaishi 71, 154–160 (1998)CrossRef T. Fujikawa, Tire tread wear prediction by rubber pad wear test (in Japanese). Nippon Gomu Kyokaishi 71, 154–160 (1998)CrossRef
70.
go back to reference T. Fujikawa et al., Tire wear caused by mild tread slip. Rubber Chem. Technol. 70, 573–583 (1997)CrossRef T. Fujikawa et al., Tire wear caused by mild tread slip. Rubber Chem. Technol. 70, 573–583 (1997)CrossRef
71.
go back to reference K.A. Grosch, Correlation between road wear of tires and computer road wear simulation using laboratory abrasion data. Rubber Chem. Technol. 77, 791–814 (2002)CrossRef K.A. Grosch, Correlation between road wear of tires and computer road wear simulation using laboratory abrasion data. Rubber Chem. Technol. 77, 791–814 (2002)CrossRef
72.
go back to reference A. Tomita, Technology for improvement on tire irregular wear (in Japanese). Nippon Gomu Kyokaishi 76, 52–57 (2003)CrossRef A. Tomita, Technology for improvement on tire irregular wear (in Japanese). Nippon Gomu Kyokaishi 76, 52–57 (2003)CrossRef
73.
go back to reference K. Kato, K. Kadota, On development of the super-single drive (GMD) tyre, in 7th International Symposium Heavy Vehicle Weights & Dimensions, Delft, Netherlands, 2002 K. Kato, K. Kadota, On development of the super-single drive (GMD) tyre, in 7th International Symposium Heavy Vehicle Weights & Dimensions, Delft, Netherlands, 2002
74.
go back to reference N. Wada et al., Effect of filled fibers and their orientations on the wear of short fiber reinforced rubber composites. Nippon Gomu Kyokaishi 66(8), 572–584 (1993)CrossRef N. Wada et al., Effect of filled fibers and their orientations on the wear of short fiber reinforced rubber composites. Nippon Gomu Kyokaishi 66(8), 572–584 (1993)CrossRef
Metadata
Title
Wear of Tires
Author
Yukio Nakajima
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-5799-2_14

Premium Partners