Skip to main content
Top

2025 | OriginalPaper | Chapter

Web-Based AI Assistant for Medical Imaging: A Case Study on Predicting Spontaneous Preterm Birth via Ultrasound Images

Authors : Weichen Bi, Zijian Shao, Yudong Han, Jiaqi Du, Yuan Wei, Lijuan Guo, Tianchen Wu, Shuang Li, Yun Ma

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The potential for artificial intelligence (AI) in analyzing medical images is vast and promises significant future advancements. It brings opportunities for community and remote-area hospitals to be equipped with professional capabilities once exclusive to top-tier medical institutions. However, applying in-lab AI methods to real-world applications of medical imaging is challenging due to the complexity of gathering training datasets as well as the need for intricate systems and specialized devices. In this paper, we demonstrate how the web platform could benefit the application of AI methods in medical imaging based on the lightweight design, cross-platform portability, streamlined distribution and deployment of the web. Specifically, we design and implement a web-based assistant for predicting spontaneous preterm births via ultrasound images. During the development phase, we leverage crowdsourcing on the web to annotate ultrasound images and gather domain-specific features to train the AI model for predicting spontaneous preterm birth. During the deployment phase, we employ WebAR to present AI-assisted diagnostic insights for physicians. Evaluation results show that our system achieves an AUC of 0.769, nearing the diagnostic proficiency of top-tier physicians. Besides, our WebAR system exhibits only 527.2–1754.2 ms latency, enabling effective assisted diagnosis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baheti, B., Innani, S., Gajre, S., Talbar, S.: Eff-UNet: a novel architecture for semantic segmentation in unstructured environment. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 358–359 (2020) Baheti, B., Innani, S., Gajre, S., Talbar, S.: Eff-UNet: a novel architecture for semantic segmentation in unstructured environment. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 358–359 (2020)
2.
go back to reference Bi, W., Ma, Y., Tian, D., Yang, Q., Zhang, M., Jing, X.: Demystifying mobile extended reality in web browsers: how far can we go? In: The ACM Web Conference 2023, pp. 2960–2969 (2023) Bi, W., Ma, Y., Tian, D., Yang, Q., Zhang, M., Jing, X.: Demystifying mobile extended reality in web browsers: how far can we go? In: The ACM Web Conference 2023, pp. 2960–2969 (2023)
3.
go back to reference Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017) Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous convolution for semantic image segmentation. arXiv preprint arXiv:​1706.​05587 (2017)
6.
go back to reference Garces, A.L., et al.: The global network neonatal cause of death algorithm for low-resource settings. Acta Paediatr. 106(6), 904–911 (2017)CrossRef Garces, A.L., et al.: The global network neonatal cause of death algorithm for low-resource settings. Acta Paediatr. 106(6), 904–911 (2017)CrossRef
7.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
8.
go back to reference Oduor, M., Perälä, T.: Interactive urban play to encourage active mobility: usability study of a web-based augmented reality application. Front. Comput. Sci. 3, 706162 (2021)CrossRef Oduor, M., Perälä, T.: Interactive urban play to encourage active mobility: usability study of a web-based augmented reality application. Front. Comput. Sci. 3, 706162 (2021)CrossRef
Metadata
Title
Web-Based AI Assistant for Medical Imaging: A Case Study on Predicting Spontaneous Preterm Birth via Ultrasound Images
Authors
Weichen Bi
Zijian Shao
Yudong Han
Jiaqi Du
Yuan Wei
Lijuan Guo
Tianchen Wu
Shuang Li
Yun Ma
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_22

Premium Partner