Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

15-06-2018 | Original Article | Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019

Weight-sharing multi-stage multi-scale ensemble convolutional neural network

Journal:
International Journal of Machine Learning and Cybernetics > Issue 7/2019
Authors:
Xuesong Wang, Achun Bao, Yuhu Cheng, Qiang Yu
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Most of the existing convolutional neural networks (CNNs) ignore multi-scale features of input image to different extents. Thus they lack robustness to feature scale of the input image, which limits the generalization ability of the model. In addition, on the premise of large-scale data, in order to obtain higher image classification accuracy, CNNs generally require more layers and a huge amount of parameters, resulting in a higher cost of network training. To this end, a Weight-Sharing Multi-Stage Multi-Scale Ensemble Convolutional Neural Network (WSMSMSE-CNN) is proposed in this paper. The input image is pooled several times to obtain multi-scale images and sent to a multi-stage network. Each stage is a multi-layer multi-scale ensemble network consisting of Conv Block, Pooling layer and Dropout layer. Conv Blocks in the same stage are connected by pooling layers while those in different stage but at the same location share the same weights. In this way, multi-scale features of both the same image and scale features of multi-scale images are obtained. In addition, the large-sized convolutional kernel is replaced by a number of consecutive small-sized ones, which not only keep the receptive field unchanged, but also effectively control the number of parameters. Experimental results on CIFAR-10 and CIFAR-100 datasets verify that WSMSMSE-CNN not only has good robustness, but also requires fewer layers to obtain higher classification accuracy.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Go to the issue