Skip to main content
Top

2025 | OriginalPaper | Chapter

Weighted Linear Regression with Optimized Gap for Learned Index

Authors : Hongtao Sun, Libin Zheng, Jian Yin

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Learned index is a novel index structure and changed the way we treat the traditional field of DBMS index. It views index as models and uses a learning-based approach to fit the distribution of stored data. The models input the key and output the predicted location of the target keys. To achieve higher query throughput, we propose WELGOR. We train the linear regression model with priority of the keys. To improve the mapping ability of the model, we use a hybrid model which adds the design of a simple linear model to better indexing keys. Besides, we also optimize the space allocation for gap design in node while achieving comparable throughput. Experiments show that WELGOR achieves 23% to 93% improvement in throughput compared with state-of-art methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference Chen, Z., Hua, Y., Ding, B., Zuo, P.: Lock-free concurrent level hashing for persistent memory. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 799–812 (2020) Chen, Z., Hua, Y., Ding, B., Zuo, P.: Lock-free concurrent level hashing for persistent memory. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 799–812 (2020)
6.
go back to reference Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1082–1090 (2011) Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1082–1090 (2011)
7.
go back to reference Ding, J., et al.: Alex: an updatable adaptive learned index. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 969–984 (2020) Ding, J., et al.: Alex: an updatable adaptive learned index. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 969–984 (2020)
8.
go back to reference Ding, J., Nathan, V., Alizadeh, M., Kraska, T.: Tsunami: a learned multi-dimensional index for correlated data and skewed workloads. Proc. VLDB Endowment 14(2), 74–86 (2020)CrossRef Ding, J., Nathan, V., Alizadeh, M., Kraska, T.: Tsunami: a learned multi-dimensional index for correlated data and skewed workloads. Proc. VLDB Endowment 14(2), 74–86 (2020)CrossRef
9.
go back to reference Ferragina, P., Vinciguerra, G.: The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. Proc. VLDB Endowment 13(8), 1162–1175 (2020)CrossRef Ferragina, P., Vinciguerra, G.: The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. Proc. VLDB Endowment 13(8), 1162–1175 (2020)CrossRef
10.
go back to reference Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: Fiting-tree: a data-aware index structure. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1189–1206 (2019) Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: Fiting-tree: a data-aware index structure. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1189–1206 (2019)
11.
go back to reference Ge, J., et al.: SALI: a scalable adaptive learned index framework based on probability models. Proc. ACM Manag. Data 1(4), 1–25 (2023)CrossRef Ge, J., et al.: SALI: a scalable adaptive learned index framework based on probability models. Proc. ACM Manag. Data 1(4), 1–25 (2023)CrossRef
12.
go back to reference Kipf, A., et al.: RadixSpline: a single-pass learned index. In: Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, pp. 1–5 (2020) Kipf, A., et al.: RadixSpline: a single-pass learned index. In: Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, pp. 1–5 (2020)
13.
go back to reference Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, pp. 489–504 (2018) Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, pp. 489–504 (2018)
14.
go back to reference Li, P., Hua, Y., Jia, J., Zuo, P.: FINEdex: a fine-grained learned index scheme for scalable and concurrent memory systems. Proc. VLDB Endowment 15(2), 321–334 (2021)CrossRef Li, P., Hua, Y., Jia, J., Zuo, P.: FINEdex: a fine-grained learned index scheme for scalable and concurrent memory systems. Proc. VLDB Endowment 15(2), 321–334 (2021)CrossRef
15.
go back to reference Li, P., Lu, H., Zhu, R., Ding, B., Yang, L., Pan, G.: DILI: A distribution-driven learned index. arXiv preprint arXiv:2304.08817 (2023) Li, P., Lu, H., Zhu, R., Ding, B., Yang, L., Pan, G.: DILI: A distribution-driven learned index. arXiv preprint arXiv:​2304.​08817 (2023)
16.
go back to reference Lu, B., Ding, J., Lo, E., Minhas, U.F., Wang, T.: APEX: a high-performance learned index on persistent memory. Proc. VLDB Endowment 15(3), 597–610 (2021)CrossRef Lu, B., Ding, J., Lo, E., Minhas, U.F., Wang, T.: APEX: a high-performance learned index on persistent memory. Proc. VLDB Endowment 15(3), 597–610 (2021)CrossRef
17.
go back to reference Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value storage. In: Proceedings of the 7th ACM European Conference on Computer Systems, pp. 183–196 (2012) Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value storage. In: Proceedings of the 7th ACM European Conference on Computer Systems, pp. 183–196 (2012)
18.
go back to reference Nathan, V., Ding, J., Alizadeh, M., Kraska, T.: Learning multi-dimensional indexes. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 985–1000 (2020) Nathan, V., Ding, J., Alizadeh, M., Kraska, T.: Learning multi-dimensional indexes. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 985–1000 (2020)
19.
go back to reference Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial analytics systems? Proc. VLDB Endowment 11(11), 1661–1673 (2018)CrossRef Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial analytics systems? Proc. VLDB Endowment 11(11), 1661–1673 (2018)CrossRef
Metadata
Title
Weighted Linear Regression with Optimized Gap for Learned Index
Authors
Hongtao Sun
Libin Zheng
Jian Yin
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_2

Premium Partner