Skip to main content
Top

2021 | OriginalPaper | Chapter

Welcome to the Data Jungle – Our Way to Tackle AI-Supported Vehicle Development Projects

Authors : J. Maerker, T. Fleischer, T. Rößler, M. Keckeisen

Published in: 21. Internationales Stuttgarter Symposium

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the automotive industry, high expectations have been placed on the industrial application of Artificial Intelligence (AI) for several years. These expectations focus on both the development of vehicles and the vehicles themselves. Machine Learning should help to accelerate processes, increase quality, and even pave way to tackle previously non-feasible challenges. Indeed, AI methods hold the potential to meet these needs in most cases, provided they are applied in the right way and used in the correct context.
This paper gives a descriptive overview of AI methods and their practical application in industry and research projects, especially in vehicle development. TWT is constantly developing new successful AI-based solutions in customer projects. In addition to various abstracted examples from industrial projects, exemplary results from TWT's participation in the research project AutoAkzept are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Las Vegas (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Las Vegas (2016)
2.
go back to reference Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)
3.
go back to reference Vandekerckhove, J., Matzke, D., Wagenmakers, E.J.: Model comparison and the principle of parsimony. Oxford Handbook of Computational and Mathematical Psychology, pp. 300–319 (2015) Vandekerckhove, J., Matzke, D., Wagenmakers, E.J.: Model comparison and the principle of parsimony. Oxford Handbook of Computational and Mathematical Psychology, pp. 300–319 (2015)
4.
go back to reference Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media (2009) Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media (2009)
5.
go back to reference Singh, S.P., Kearns, M.J., Litman, D. J., Walker, M.A.: Reinforcement learning for spoken dialogue systems. In: Advances in Neural Information Processing Systems, pp. 956–962 (2000) Singh, S.P., Kearns, M.J., Litman, D. J., Walker, M.A.: Reinforcement learning for spoken dialogue systems. In: Advances in Neural Information Processing Systems, pp. 956–962 (2000)
7.
go back to reference Gianfrancesco, M.A., Tamang, S., Yazdany, J., Schmajuk, G.: Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 178(11), 1544–1547 (2018)CrossRef Gianfrancesco, M.A., Tamang, S., Yazdany, J., Schmajuk, G.: Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 178(11), 1544–1547 (2018)CrossRef
8.
go back to reference Li, S., Fonarow, G.C., Mukamal, K.J., Liang, L., Schulte, P.J., Smith, E.E., DeVore, A., Hernandez, A.F., Peterson, E.D., Bhatt, D.L.: Sex and race/ethnicity–related disparities in care and outcomes after hospitalization for coronary artery disease among older adults. Circulation: Cardiovascular Quality Outcomes 9(2_suppl_1), 36–44 (2016) Li, S., Fonarow, G.C., Mukamal, K.J., Liang, L., Schulte, P.J., Smith, E.E., DeVore, A., Hernandez, A.F., Peterson, E.D., Bhatt, D.L.: Sex and race/ethnicity–related disparities in care and outcomes after hospitalization for coronary artery disease among older adults. Circulation: Cardiovascular Quality Outcomes 9(2_suppl_1), 36–44 (2016)
9.
go back to reference Fredriksson, T., Mattos, D.I., Bosch, J., Olsson, H.H.: Data labeling: an empirical investigation into industrial challenges and mitigation strategies. In: International Conference on Product-Focused Software Process Improvement, pp. 202–216. Springer, Cham (2020) Fredriksson, T., Mattos, D.I., Bosch, J., Olsson, H.H.: Data labeling: an empirical investigation into industrial challenges and mitigation strategies. In: International Conference on Product-Focused Software Process Improvement, pp. 202–216. Springer, Cham (2020)
10.
go back to reference Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? Improving data quality and data mining using multiple, noisy labelers. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 614–622. Association for Computing Machinery, New York (2008) Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? Improving data quality and data mining using multiple, noisy labelers. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 614–622. Association for Computing Machinery, New York (2008)
11.
go back to reference Kotlinski, P., Chang, X.J., Chih-Yun, Y., Chiu, W. C., Chang, Y.J.: Using gamification to create and label photos that are challenging for computer vision and people. In: Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2020 International Symposium on Wearable Computers (UbiComp/ISWC 20), Cancun, México. ACM, New York (2020) Kotlinski, P., Chang, X.J., Chih-Yun, Y., Chiu, W. C., Chang, Y.J.: Using gamification to create and label photos that are challenging for computer vision and people. In: Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2020 International Symposium on Wearable Computers (UbiComp/ISWC 20), Cancun, México. ACM, New York (2020)
12.
go back to reference Drewitz, U., Ihme, K., Bahnmüller, C., Fleischer, T., La, H., Pape, A.-A., Gräfing, D., Niermann, D., Trende, A.: Towards user-focused vehicle automation: the architectural approach of the AutoAkzept project. In: Krömker H. (eds.) HCI in Mobility, Transport, and Automotive Systems. Automated Driving and In-Vehicle Experience Design. HCII 2020. Lecture Notes in Computer Science, vol. 12212, pp. 15–30. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50523-3 Drewitz, U., Ihme, K., Bahnmüller, C., Fleischer, T., La, H., Pape, A.-A., Gräfing, D., Niermann, D., Trende, A.: Towards user-focused vehicle automation: the architectural approach of the AutoAkzept project. In: Krömker H. (eds.) HCI in Mobility, Transport, and Automotive Systems. Automated Driving and In-Vehicle Experience Design. HCII 2020. Lecture Notes in Computer Science, vol. 12212, pp. 15–30. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-50523-3
13.
go back to reference Appelhans, B.M., Luecken, L.J.: Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 10(3), 229–240 (2006)CrossRef Appelhans, B.M., Luecken, L.J.: Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 10(3), 229–240 (2006)CrossRef
14.
go back to reference Van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for small-unit tactical behavior. In: Proceedings of the National Conference on Artificial Intelligence, pp. 900–907. AAAI Press, MIT Press, Menlo Park, 1999 (2004) Van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for small-unit tactical behavior. In: Proceedings of the National Conference on Artificial Intelligence, pp. 900–907. AAAI Press, MIT Press, Menlo Park, 1999 (2004)
15.
go back to reference Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), nd Web, 2(2) (2017) Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), nd Web, 2(2) (2017)
16.
go back to reference Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(3), 131–156 (1997)CrossRef Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(3), 131–156 (1997)CrossRef
17.
go back to reference Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)MATH Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)MATH
18.
go back to reference Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)CrossRef Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)CrossRef
19.
go back to reference Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)CrossRef Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)CrossRef
20.
go back to reference Jutten, C., Herault, J.: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Sig. Process. 24(1), 1–10 (1991)CrossRef Jutten, C., Herault, J.: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Sig. Process. 24(1), 1–10 (1991)CrossRef
21.
go back to reference Amr, T.: Hands-on machine learning with scikit-learn and scientific Python toolkits: a practical guide to implementing supervised and unsupervised machine learning algorithms in Python. Packt Publishing, p. 257 (2020) Amr, T.: Hands-on machine learning with scikit-learn and scientific Python toolkits: a practical guide to implementing supervised and unsupervised machine learning algorithms in Python. Packt Publishing, p. 257 (2020)
22.
go back to reference Dietterich, T.: Overfitting and undercomputing in machine learning. ACM Comput. Surv. (CSUR) 27(3), 326–327 (1995)CrossRef Dietterich, T.: Overfitting and undercomputing in machine learning. ACM Comput. Surv. (CSUR) 27(3), 326–327 (1995)CrossRef
23.
go back to reference Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Machine Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Machine Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH
28.
go back to reference Pape, A.-A., Cornelsen, S., Fäßler, V., Ihme, K., Oehl, M., Drewitz, U., Hartwich, F., Schrödel, F., Lüdtke, A., & Schramm, M.: Empathic assistants – Methods and use cases in automated and non-automated driving. In: 20. Internationales Stuttgarter Symposium, pp. 435–449. Springer Vieweg, Wiesbaden (2020) Pape, A.-A., Cornelsen, S., Fäßler, V., Ihme, K., Oehl, M., Drewitz, U., Hartwich, F., Schrödel, F., Lüdtke, A., & Schramm, M.: Empathic assistants – Methods and use cases in automated and non-automated driving. In: 20. Internationales Stuttgarter Symposium, pp. 435–449. Springer Vieweg, Wiesbaden (2020)
29.
go back to reference Liu, F.T., Ting, K.M., & Zhou, Z.H.: Isolation forest. In: Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE, Pisa (2008) Liu, F.T., Ting, K.M., & Zhou, Z.H.: Isolation forest. In: Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE, Pisa (2008)
Metadata
Title
Welcome to the Data Jungle – Our Way to Tackle AI-Supported Vehicle Development Projects
Authors
J. Maerker
T. Fleischer
T. Rößler
M. Keckeisen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-658-33466-6_18

Premium Partner