Skip to main content
Top
Published in:

01-11-2023

What AI, Neuroscience, and Cognitive Science Can Learn from Each Other: An Embedded Perspective

Author: Tsvi Achler

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Scientists studying in the fields of AI and neuroscience can learn much from each other, but unfortunately, since about the 1950s, it has been mostly one-sided: neuroscientists have learned from AI, but less so the other way. I argue this is holding back both brain understanding and progress in AI. Current AI (“neural network”/deep learning algorithms) and the brain are very different from each other. The brain does not seem to use trial-and-error–type learning algorithms such as backpropagation to modify weights and more importantly does not require the cumbersome rehearsal needed for trial-and-error implementation. The brain can learn information in a modular and true “one-shot” fashion as the information is encountered while the AI cannot. Instead of backpropagation and rehearsal, there is evidence that the brain regulates its inputs during recognition using regulatory feedback: form the outputs back to inputs—the same inputs that activate the outputs. This is observed through evidence from the fields of neuroscience and cognitive psychology but is not present in current algorithms. Thus, the brain provides an abundance of evidence about its underlying algorithms and while computer science tools and analysis are essential, algorithms guided by computer science should not be standardized into neuroscience theories.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102:419–57.CrossRef McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102:419–57.CrossRef
2.
go back to reference McCloskey M, Cohen NJ. Catastrophic interference in connectionist networks: the sequential learning problem. The psychology of learning and motivation. 1989;24:109–65.CrossRef McCloskey M, Cohen NJ. Catastrophic interference in connectionist networks: the sequential learning problem. The psychology of learning and motivation. 1989;24:109–65.CrossRef
3.
go back to reference French RM. Catastrophic forgetting in connectionist networks. In: Encyclopedia of cognitive science, vol. 1. Nature Publishing Group, London; 2003. p 431–5. French RM. Catastrophic forgetting in connectionist networks. In: Encyclopedia of cognitive science, vol. 1. Nature Publishing Group, London; 2003. p 431–5.
4.
go back to reference Coop R, Arel I. Mitigation of catastrophic interference in neural networks using a fixed expansion layer. Midwest Symposium on Circuits and Systems. 2012;726–729. Coop R, Arel I. Mitigation of catastrophic interference in neural networks using a fixed expansion layer. Midwest Symposium on Circuits and Systems. 2012;726–729.
8.
go back to reference Barretto A, Hou S, Borsa D, Silver D, Precup D. Fast reinforcement learning with generalized policy updates. PNAS. 2020;117:30079–87.CrossRef Barretto A, Hou S, Borsa D, Silver D, Precup D. Fast reinforcement learning with generalized policy updates. PNAS. 2020;117:30079–87.CrossRef
9.
go back to reference Scellier B, Bengio Y. Equilibrium propagation: bridging the gap between energy-based models and backpropagation. Front Comput Neurosci. 2016. Scellier B, Bengio Y. Equilibrium propagation: bridging the gap between energy-based models and backpropagation. Front Comput Neurosci. 2016.
10.
go back to reference Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser MB. Fragmentation of grid cell maps in a multicompartment environment. Nat Neurosci. 2009;12(10):1325–32.CrossRef Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser MB. Fragmentation of grid cell maps in a multicompartment environment. Nat Neurosci. 2009;12(10):1325–32.CrossRef
11.
go back to reference Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci. 2019;22(10):1598–610.CrossRef Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci. 2019;22(10):1598–610.CrossRef
12.
go back to reference Maingret N, Girardeau G, Todorova R, Goutierre M, Zugaro M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci. 2016;19(7):959–64.CrossRef Maingret N, Girardeau G, Todorova R, Goutierre M, Zugaro M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci. 2016;19(7):959–64.CrossRef
13.
go back to reference Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31(3):551–70.CrossRef Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31(3):551–70.CrossRef
14.
go back to reference Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14(2):147.CrossRef Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14(2):147.CrossRef
15.
go back to reference Epsztein J. Mental replays enable flexible navigation. Nature. 2022;605:35–6.CrossRef Epsztein J. Mental replays enable flexible navigation. Nature. 2022;605:35–6.CrossRef
16.
go back to reference Lake BM, Salakhutdinov R, Tenenbaum JB. Human-level concept learning through probabilistic program induction. Science. 2015;350(6266):1332–8.MathSciNetCrossRef Lake BM, Salakhutdinov R, Tenenbaum JB. Human-level concept learning through probabilistic program induction. Science. 2015;350(6266):1332–8.MathSciNetCrossRef
17.
go back to reference Lake BM, Salakhutdinov R, Tenenbaum JB. The Omniglot challenge: A 3-year progress report. Behav Sci. 2019;335(29):97–104. Lake BM, Salakhutdinov R, Tenenbaum JB. The Omniglot challenge: A 3-year progress report. Behav Sci. 2019;335(29):97–104.
18.
go back to reference Koch I, Itti NL, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. V20, No. 11. 1998. p 1254–9. Koch I, Itti NL, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. V20, No. 11. 1998. p 1254–9.
19.
go back to reference Rosenholtz R. Search asymmetries? What search asymmetries? Percept Psychophys. 2001;63(3):476–89.CrossRef Rosenholtz R. Search asymmetries? What search asymmetries? Percept Psychophys. 2001;63(3):476–89.CrossRef
20.
go back to reference Duncan J, Humphreys GW. Visual-search and stimulus similarity. Psychol Rev. 1989;96(3):433–58.CrossRef Duncan J, Humphreys GW. Visual-search and stimulus similarity. Psychol Rev. 1989;96(3):433–58.CrossRef
21.
go back to reference Wolfe JM. Asymmetries in visual search: an introduction. Percept Psychophys. 2001;63(3):p381–9.CrossRef Wolfe JM. Asymmetries in visual search: an introduction. Percept Psychophys. 2001;63(3):p381–9.CrossRef
22.
go back to reference Francis G, Cho Y. Effects of temporal integration on the shape of visual backward masking functions. J Exp Psychol Hum Percept Perform. 2008;34:1116–28.CrossRef Francis G, Cho Y. Effects of temporal integration on the shape of visual backward masking functions. J Exp Psychol Hum Percept Perform. 2008;34:1116–28.CrossRef
23.
go back to reference Rinberg D, Koulakov A. Gelperin A speed accuracy tradeoff in olfaction. Neuron. 2006;51(3):351–8.CrossRef Rinberg D, Koulakov A. Gelperin A speed accuracy tradeoff in olfaction. Neuron. 2006;51(3):351–8.CrossRef
24.
go back to reference Xue M, Atallah BV, Scanziani M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature. 2014;511:596–600.CrossRef Xue M, Atallah BV, Scanziani M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature. 2014;511:596–600.CrossRef
27.
go back to reference Sadeh S, Clopath C. Excitatory-inhibitory balance modulates the formation and dynamics of neuronal assemblies in cortical networks. Nature Rev. 2021;22:21–37.CrossRef Sadeh S, Clopath C. Excitatory-inhibitory balance modulates the formation and dynamics of neuronal assemblies in cortical networks. Nature Rev. 2021;22:21–37.CrossRef
28.
go back to reference Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex J Neurophys. 2005;94:1904–11. Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex J Neurophys. 2005;94:1904–11.
30.
go back to reference Zenke F, Gerstner W, Ganguli S. The temporal paradox of Hebbian learning and homeostatic plasticity. Curr Opin Neurobiol. 2017. Zenke F, Gerstner W, Ganguli S. The temporal paradox of Hebbian learning and homeostatic plasticity. Curr Opin Neurobiol. 2017.
31.
go back to reference Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol. 2012. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol. 2012.
32.
go back to reference Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12(1):1–24.CrossRef Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12(1):1–24.CrossRef
33.
go back to reference Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci. 2000;8(3):183–208.CrossRef Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci. 2000;8(3):183–208.CrossRef
34.
go back to reference Rao & Ballard. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2(1):79–87.CrossRef Rao & Ballard. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2(1):79–87.CrossRef
36.
go back to reference Hawkins J, Blakeslee S. On intelligence. Times Books. ISBN 0–8050–7456–2. 2004. Hawkins J, Blakeslee S. On intelligence. Times Books. ISBN 0–8050–7456–2. 2004.
37.
go back to reference Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science, Behavioral and Brain Sciences. 2013;36:181–253. Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science, Behavioral and Brain Sciences. 2013;36:181–253.
40.
go back to reference Desimone R, Duncan J. Neural mechanism of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.CrossRef Desimone R, Duncan J. Neural mechanism of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.CrossRef
44.
go back to reference Open Science Collaboration. Psychology. Estimating the reproducibility of psychological science. Science. 2015;349(6251). Open Science Collaboration. Psychology. Estimating the reproducibility of psychological science. Science. 2015;349(6251).
45.
go back to reference Dacrema, P Cremonesi, D Jannach. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In: Proceedings of the 13th ACM Conference on Recommender Systems, vol. 13. 2019. p 101–9. Dacrema, P Cremonesi, D Jannach. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In: Proceedings of the 13th ACM Conference on Recommender Systems, vol. 13. 2019. p 101–9.
48.
go back to reference Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities PNAS, v79.8. 1982. p 2554–8. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities PNAS, v79.8. 1982. p 2554–8.
51.
go back to reference Achler T. Symbolic neural networks for cognitive capacities. Biol Inspired Cog Arch. 2014;9:71–81. Achler T. Symbolic neural networks for cognitive capacities. Biol Inspired Cog Arch. 2014;9:71–81.
52.
go back to reference Spratling MW. A predictive coding model of gaze shifts and the underlying neurophysiology. Vis Cogn 2017;25(7-8):770–801. Spratling MW. A predictive coding model of gaze shifts and the underlying neurophysiology. Vis Cogn 2017;25(7-8):770–801.
53.
go back to reference Achler T. Input shunt networks. Neurocomputing. 2001;44–46c:249–255. Achler T. Input shunt networks. Neurocomputing. 2001;44–46c:249–255.
54.
go back to reference Hebb DO. The organization of behavior. New York: Wiley & Sons; 1949. Hebb DO. The organization of behavior. New York: Wiley & Sons; 1949.
Metadata
Title
What AI, Neuroscience, and Cognitive Science Can Learn from Each Other: An Embedded Perspective
Author
Tsvi Achler
Publication date
01-11-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10194-9

Premium Partner