Skip to main content
Top

2022 | OriginalPaper | Chapter

What is the Right Way to Model Traction Power Distribution in Complex Heavy Haul Locomotive Models?

Authors : Maksym Spiryagin, Peter Wolfs, Qing Wu, Colin Cole, Tim McSweeney

Published in: Advances in Dynamics of Vehicles on Roads and Tracks II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The modeling of a heavy haul locomotive is a quite challenging task because it requires introducing multidisciplinary knowledge in the final model design. Common methods of modeling heavy haul locomotives are well described in recent publications. However, design and modeling approaches for both bogie traction control and independent wheelset traction control design architectures should not be applied for a situation when the locomotive is not limited by adhesion. In both those approaches the traction power is equally distributed between two traction inverters in the case of bogie traction control design architecture or between six traction inverters in the case of independent wheelset traction control design architecture. This means that an unreasonable limitation of traction power exists in those modeling approaches. To resolve this issue, the right way to model the traction power system is to introduce a supplementary control mechanism that adjusts the torque reference at each inverter of the locomotive based on a physical state estimation of the traction power condition of the locomotive during each time step of a simulation process. This paper discusses the right ways of modeling this scenario and how the proposed improvement affects the traction performance in locomotive adhesion studies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Spiryagin, M., Wolfs, P., Cole, C., Spiryagin, V., Sun, Y.Q., McSweeney, T.: Design and Simulation of Heavy Haul Locomotives and Trains. CRC Press, Boca Raton (2016)CrossRef Spiryagin, M., Wolfs, P., Cole, C., Spiryagin, V., Sun, Y.Q., McSweeney, T.: Design and Simulation of Heavy Haul Locomotives and Trains. CRC Press, Boca Raton (2016)CrossRef
2.
go back to reference Gromacki, B.: Locomotive modernisation: benefits and case study. In: Conference on Railway Engineering CORE 2002, Cost Efficient Railways through Engineering, Wollongong, New South Wales, 10–13 November 2002, pp. 141–147 (2002) Gromacki, B.: Locomotive modernisation: benefits and case study. In: Conference on Railway Engineering CORE 2002, Cost Efficient Railways through Engineering, Wollongong, New South Wales, 10–13 November 2002, pp. 141–147 (2002)
3.
go back to reference Spiryagin, M., Wolfs, P., Szanto, F., Cole, C.: Simplified and advanced modelling of traction control systems of heavy-haul locomotives. Veh. Syst. Dyn. 53(5), 672–691 (2015)CrossRef Spiryagin, M., Wolfs, P., Szanto, F., Cole, C.: Simplified and advanced modelling of traction control systems of heavy-haul locomotives. Veh. Syst. Dyn. 53(5), 672–691 (2015)CrossRef
4.
go back to reference Spiryagin, M., Wolfs, P., Cole, C., Stichel, S., Berg, M., Plöch, M.: Influence of AC system design on the realisation of tractive efforts by high adhesion locomotives. Veh. Syst. Dyn. 55(8), 1241–1264 (2017)CrossRef Spiryagin, M., Wolfs, P., Cole, C., Stichel, S., Berg, M., Plöch, M.: Influence of AC system design on the realisation of tractive efforts by high adhesion locomotives. Veh. Syst. Dyn. 55(8), 1241–1264 (2017)CrossRef
5.
go back to reference Spiryagin, M., Bruni, S., Bosomworth, C., Wolfs, P., Cole, C.: Rail Vehicle Mechatronics. CRC Press, Boca Raton (2021)CrossRef Spiryagin, M., Bruni, S., Bosomworth, C., Wolfs, P., Cole, C.: Rail Vehicle Mechatronics. CRC Press, Boca Raton (2021)CrossRef
7.
go back to reference Spiryagin, M., Persson, I., Wu, Q., Bosomworth, C., Wolfs, P., Cole, C.: A co-simulation approach for heavy haul long distance locomotive-track simulation studies Veh. Syst. Dyn. 57(9), 1363-1380 (2019) Spiryagin, M., Persson, I., Wu, Q., Bosomworth, C., Wolfs, P., Cole, C.: A co-simulation approach for heavy haul long distance locomotive-track simulation studies Veh. Syst. Dyn. 57(9), 1363-1380 (2019)
8.
go back to reference Spiryagin, M., Harrison, H., Wu, Q., Nielsen, D., Cole, C., Wolfs, P., Bosomworth, C., Hayman, M.: Locomotive adhesion control + rail friction field measurements=?. In: Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A. (eds.) IAVSD 2019. LNME, pp. 433–441. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38077-9_51CrossRef Spiryagin, M., Harrison, H., Wu, Q., Nielsen, D., Cole, C., Wolfs, P., Bosomworth, C., Hayman, M.: Locomotive adhesion control + rail friction field measurements=?. In: Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A. (eds.) IAVSD 2019. LNME, pp. 433–441. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-38077-9_​51CrossRef
9.
go back to reference US Patent 7027900 B2. Enhanced locomotive adhesion control, 11 April 2006 US Patent 7027900 B2. Enhanced locomotive adhesion control, 11 April 2006
10.
go back to reference Spiryagin, M., Polach, O., Cole, C.: Creep force modelling for rail traction vehicles based on the fastsim algorithm. Veh. Syst. Dyn. 51(11), 1765–1783 (2013)CrossRef Spiryagin, M., Polach, O., Cole, C.: Creep force modelling for rail traction vehicles based on the fastsim algorithm. Veh. Syst. Dyn. 51(11), 1765–1783 (2013)CrossRef
11.
go back to reference Spiryagin, M., Persson, I., Hayman, M., et al.: Friction measurement and creep force modelling methodology for locomotive track damage studies. Wear 202932, 432–433 (2019) Spiryagin, M., Persson, I., Hayman, M., et al.: Friction measurement and creep force modelling methodology for locomotive track damage studies. Wear 202932, 432–433 (2019)
12.
go back to reference Federal Railroad Administration. Track safety standards – Classes 1 through 5. Chapter 1: Track and Rail and Infrastructure Integrity Compliance Manual; Federal Railroad Administration, Washington (DC), January 2014 Federal Railroad Administration. Track safety standards – Classes 1 through 5. Chapter 1: Track and Rail and Infrastructure Integrity Compliance Manual; Federal Railroad Administration, Washington (DC), January 2014
Metadata
Title
What is the Right Way to Model Traction Power Distribution in Complex Heavy Haul Locomotive Models?
Authors
Maksym Spiryagin
Peter Wolfs
Qing Wu
Colin Cole
Tim McSweeney
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-031-07305-2_35

Premium Partner