Skip to main content
Top

2020 | OriginalPaper | Chapter

19. Whole Tooth Engineering

Authors : Leila Mohammadi Amirabad, Payam Zarrintaj, Amanda Lindemuth, Lobat Tayebi

Published in: Applications of Biomedical Engineering in Dentistry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There are several challenges in using common removable artificial dental implants, including high risk of bone loss and implant failure. Therefore, bioengineering of physiologically functional whole teeth using regenerative approaches seems essential. To a bioengineer a whole tooth, autologous stem cell-seeded scaffolds, and stem cell reassociations can be implanted at the site of the tooth loss, where they may develop and erupt similarly to a natural tooth. Successful bioengineering of a whole tooth requires appropriate cell source(s), scaffolds, and the induction of the cascade expression of special genes involved in tooth development. To achieve such tooth therapy, we need to fully understand the structure and interaction procedure of epithelial/mesenchymal stem cells during embryonic development of teeth. In this chapter, we first focus on different cell sources and cell signaling pathways through which different parts of a tooth form during tooth development. Then, we describe the recent methods employed for bioengineering a whole tooth, including the organ germ method, sheet engineering, and scaffold-based tissue engineering. Ultimately, the functionality of an engineered whole tooth and future prospects of whole tooth engineering are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kassebaum, N., et al. (2017). Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. Journal of Dental Research, 96(4), 380–387.CrossRef Kassebaum, N., et al. (2017). Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. Journal of Dental Research, 96(4), 380–387.CrossRef
2.
go back to reference Greenstein, G., Cavallaro, J., Romanos, G., & Tarnow, D. (2008). Clinical recommendations for avoiding and managing surgical complications associated with implant dentistry: A review. Journal of Periodontology, 79(8), 1317–1329.CrossRef Greenstein, G., Cavallaro, J., Romanos, G., & Tarnow, D. (2008). Clinical recommendations for avoiding and managing surgical complications associated with implant dentistry: A review. Journal of Periodontology, 79(8), 1317–1329.CrossRef
3.
go back to reference Jung, R. E., Pjetursson, B. E., Glauser, R., Zembic, A., Zwahlen, M., & Lang, N. P. (2008). A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clinical Oral Implants Research, 19(2), 119–130.CrossRef Jung, R. E., Pjetursson, B. E., Glauser, R., Zembic, A., Zwahlen, M., & Lang, N. P. (2008). A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clinical Oral Implants Research, 19(2), 119–130.CrossRef
4.
go back to reference Lai, W.-F., Lee, J.-M., & Jung, H.-S. (2014). Molecular and engineering approaches to regenerate and repair teeth in mammals. Cellular and Molecular Life Sciences, 71(9), 1691–1701.CrossRef Lai, W.-F., Lee, J.-M., & Jung, H.-S. (2014). Molecular and engineering approaches to regenerate and repair teeth in mammals. Cellular and Molecular Life Sciences, 71(9), 1691–1701.CrossRef
5.
go back to reference Zhang, Y. D., Zhi, C., Song, Y. Q., Chao, L., & Chen, Y. P. (2005). Making a tooth: Growth factors, transcription factors, and stem cells. Cell Research, 15(5), 301.CrossRef Zhang, Y. D., Zhi, C., Song, Y. Q., Chao, L., & Chen, Y. P. (2005). Making a tooth: Growth factors, transcription factors, and stem cells. Cell Research, 15(5), 301.CrossRef
6.
go back to reference Ikeda, E., et al. (2009). Fully functional bioengineered tooth replacement as an organ replacement therapy. Proceedings of the National Academy of Sciences, 106(32), 13475–13480.CrossRef Ikeda, E., et al. (2009). Fully functional bioengineered tooth replacement as an organ replacement therapy. Proceedings of the National Academy of Sciences, 106(32), 13475–13480.CrossRef
7.
go back to reference Oshima, M., et al. (2011). Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One, 6(7), e21531.CrossRef Oshima, M., et al. (2011). Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One, 6(7), e21531.CrossRef
8.
go back to reference Gao, Z., et al. (2016). Bio-root and implant-based restoration as a tooth replacement alternative. Journal of Dental Research, 95(6), 642–649.CrossRef Gao, Z., et al. (2016). Bio-root and implant-based restoration as a tooth replacement alternative. Journal of Dental Research, 95(6), 642–649.CrossRef
9.
go back to reference Young, C. S., et al. (2005). Tissue-engineered hybrid tooth and bone. Tissue Engineering, 11(9–10), 1599–1610.CrossRef Young, C. S., et al. (2005). Tissue-engineered hybrid tooth and bone. Tissue Engineering, 11(9–10), 1599–1610.CrossRef
10.
go back to reference Egusa, H., et al. (2010). Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One, 5(9), e12743.CrossRef Egusa, H., et al. (2010). Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One, 5(9), e12743.CrossRef
11.
go back to reference Wada, N., Wang, B., Lin, N. H., Laslett, A. L., Gronthos, S., & Bartold, P. M. (2011). Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. Journal of Periodontal Research, 46(4), 438–447.CrossRef Wada, N., Wang, B., Lin, N. H., Laslett, A. L., Gronthos, S., & Bartold, P. M. (2011). Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. Journal of Periodontal Research, 46(4), 438–447.CrossRef
12.
go back to reference Yan, X., Qin, H., Qu, C., Tuan, R. S., Shi, S., & Huang, G. T.-J. (2010). iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells and Development, 19(4), 469–480.CrossRef Yan, X., Qin, H., Qu, C., Tuan, R. S., Shi, S., & Huang, G. T.-J. (2010). iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells and Development, 19(4), 469–480.CrossRef
13.
go back to reference Amirabad, L. M., et al. (2017). Enhanced cardiac differentiation of human cardiovascular disease patient-specific induced pluripotent stem cells by applying unidirectional electrical pulses using aligned electroactive nanofibrous scaffolds. ACS Applied Materials & Interfaces, 9(8), 6849–6864.CrossRef Amirabad, L. M., et al. (2017). Enhanced cardiac differentiation of human cardiovascular disease patient-specific induced pluripotent stem cells by applying unidirectional electrical pulses using aligned electroactive nanofibrous scaffolds. ACS Applied Materials & Interfaces, 9(8), 6849–6864.CrossRef
14.
go back to reference Liu, L., Liu, Y. F., Zhang, J., Duan, Y. Z., & Jin, Y. (2016). Ameloblasts serum-free conditioned medium: Bone morphogenic protein 4-induced odontogenic differentiation of mouse induced pluripotent stem cells. Journal of Tissue Engineering and Regenerative Medicine, 10(6), 466–474.CrossRef Liu, L., Liu, Y. F., Zhang, J., Duan, Y. Z., & Jin, Y. (2016). Ameloblasts serum-free conditioned medium: Bone morphogenic protein 4-induced odontogenic differentiation of mouse induced pluripotent stem cells. Journal of Tissue Engineering and Regenerative Medicine, 10(6), 466–474.CrossRef
15.
go back to reference Ozeki, N., et al. (2013). Mouse-induced pluripotent stem cells differentiate into odontoblast-like cells with induction of altered adhesive and migratory phenotype of integrin. PLoS One, 8(11), e80026.CrossRef Ozeki, N., et al. (2013). Mouse-induced pluripotent stem cells differentiate into odontoblast-like cells with induction of altered adhesive and migratory phenotype of integrin. PLoS One, 8(11), e80026.CrossRef
16.
go back to reference Zamanlui, S., Amirabad, L. M., Soleimani, M., & Faghihi, S. (2018). Influence of hydrodynamic pressure on chondrogenic differentiation of human bone marrow mesenchymal stem cells cultured in perfusion system. Biologicals, 56, 1–8.CrossRef Zamanlui, S., Amirabad, L. M., Soleimani, M., & Faghihi, S. (2018). Influence of hydrodynamic pressure on chondrogenic differentiation of human bone marrow mesenchymal stem cells cultured in perfusion system. Biologicals, 56, 1–8.CrossRef
17.
go back to reference Amari, A., et al. (2015). In vitro generation of IL-35-expressing human Wharton’s jelly-derived mesenchymal stem cells using lentiviral vector. Iranian Journal of Allergy, Asthma, and Immunology, 14(4), 416–426.MathSciNet Amari, A., et al. (2015). In vitro generation of IL-35-expressing human Wharton’s jelly-derived mesenchymal stem cells using lentiviral vector. Iranian Journal of Allergy, Asthma, and Immunology, 14(4), 416–426.MathSciNet
18.
go back to reference Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97(25), 13625–13630.CrossRef Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97(25), 13625–13630.CrossRef
19.
go back to reference Seo, B.-M., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet, 364(9429), 149–155.CrossRef Seo, B.-M., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet, 364(9429), 149–155.CrossRef
20.
go back to reference Miura, M., et al. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 100(10), 5807–5812.CrossRef Miura, M., et al. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 100(10), 5807–5812.CrossRef
21.
go back to reference Cordeiro, M. M., et al. (2008). Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. Journal of Endodontics, 34(8), 962–969.CrossRef Cordeiro, M. M., et al. (2008). Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. Journal of Endodontics, 34(8), 962–969.CrossRef
22.
go back to reference Ge, J., et al. (2013). Distal C terminus of CaV1. 2 channels plays a crucial role in the neural differentiation of dental pulp stem cells. PLoS One, 8(11), e81332.CrossRef Ge, J., et al. (2013). Distal C terminus of CaV1. 2 channels plays a crucial role in the neural differentiation of dental pulp stem cells. PLoS One, 8(11), e81332.CrossRef
23.
go back to reference Guo, W., et al. (2009). The use of dentin matrix scaffold and dental follicle cells for dentin regeneration. Biomaterials, 30(35), 6708–6723.CrossRef Guo, W., et al. (2009). The use of dentin matrix scaffold and dental follicle cells for dentin regeneration. Biomaterials, 30(35), 6708–6723.CrossRef
24.
go back to reference Morsczeck, C., et al. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24(2), 155–165.CrossRef Morsczeck, C., et al. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24(2), 155–165.CrossRef
25.
go back to reference Sonoyama, W., et al. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. Journal of Endodontics, 34(2), 166–171.CrossRef Sonoyama, W., et al. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. Journal of Endodontics, 34(2), 166–171.CrossRef
26.
go back to reference Saito, M. T., Silvério, K. G., Casati, M. Z., Sallum, E. A., & Nociti, F. H., Jr. (2015). Tooth-derived stem cells: Update and perspectives. World Journal of Stem Cells, 7(2), 399.CrossRef Saito, M. T., Silvério, K. G., Casati, M. Z., Sallum, E. A., & Nociti, F. H., Jr. (2015). Tooth-derived stem cells: Update and perspectives. World Journal of Stem Cells, 7(2), 399.CrossRef
27.
go back to reference Okamoto, T., et al. (2002). Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 295(2), 354–361.CrossRef Okamoto, T., et al. (2002). Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 295(2), 354–361.CrossRef
28.
go back to reference Shinmura, Y., Tsuchiya, S., Hata, K., & Honda, M. J. (2008). Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. Journal of Cellular Physiology, 217(3), 728–738.CrossRef Shinmura, Y., Tsuchiya, S., Hata, K., & Honda, M. J. (2008). Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. Journal of Cellular Physiology, 217(3), 728–738.CrossRef
29.
go back to reference Honda, M., Shinohara, Y., Hata, K., & Ueda, M. (2007). Subcultured odontogenic epithelial cells in combination with dental mesenchymal cells produce enamel–dentin-like complex structures. Cell Transplantation, 16(8), 833–847.CrossRef Honda, M., Shinohara, Y., Hata, K., & Ueda, M. (2007). Subcultured odontogenic epithelial cells in combination with dental mesenchymal cells produce enamel–dentin-like complex structures. Cell Transplantation, 16(8), 833–847.CrossRef
30.
go back to reference Liu, Y., et al. (2013). Skin epithelial cells as possible substitutes for ameloblasts during tooth regeneration. Journal of Tissue Engineering and Regenerative Medicine, 7(12), 934–943.CrossRef Liu, Y., et al. (2013). Skin epithelial cells as possible substitutes for ameloblasts during tooth regeneration. Journal of Tissue Engineering and Regenerative Medicine, 7(12), 934–943.CrossRef
31.
go back to reference Jussila, M., Juuri, E., & Thesleff, I. (2013). Tooth morphogenesis and renewal. In Stem cells in craniofacial development and regeneration (pp. 109–134). Hoboken: Wiley-Blackwell.CrossRef Jussila, M., Juuri, E., & Thesleff, I. (2013). Tooth morphogenesis and renewal. In Stem cells in craniofacial development and regeneration (pp. 109–134). Hoboken: Wiley-Blackwell.CrossRef
32.
go back to reference Wu, P., et al. (2013). Specialized stem cell niche enables repetitive renewal of alligator teeth. Proceedings of the National Academy of Sciences, 110(22), E2009–E2018.CrossRef Wu, P., et al. (2013). Specialized stem cell niche enables repetitive renewal of alligator teeth. Proceedings of the National Academy of Sciences, 110(22), E2009–E2018.CrossRef
33.
go back to reference Laurikkala, J., Mikkola, M. L., James, M., Tummers, M., Mills, A. A., & Thesleff, I. (2006). p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development, 133(8), 1553–1563.CrossRef Laurikkala, J., Mikkola, M. L., James, M., Tummers, M., Mills, A. A., & Thesleff, I. (2006). p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development, 133(8), 1553–1563.CrossRef
34.
go back to reference Bei, M. (2009). Molecular genetics of tooth development. Current Opinion in Genetics & Development, 19(5), 504–510.CrossRef Bei, M. (2009). Molecular genetics of tooth development. Current Opinion in Genetics & Development, 19(5), 504–510.CrossRef
35.
go back to reference Mikkola, M. L. (2009). Molecular aspects of hypohidrotic ectodermal dysplasia. American Journal of Medical Genetics Part A, 149(9), 2031–2036.CrossRef Mikkola, M. L. (2009). Molecular aspects of hypohidrotic ectodermal dysplasia. American Journal of Medical Genetics Part A, 149(9), 2031–2036.CrossRef
36.
go back to reference Pispa, J., et al. (1999). Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Developmental Biology, 216(2), 521–534.CrossRef Pispa, J., et al. (1999). Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Developmental Biology, 216(2), 521–534.CrossRef
37.
go back to reference Mustonen, T., et al. (2003). Stimulation of ectodermal organ development by Ectodysplasin-A1. Developmental Biology, 259(1), 123–136.CrossRef Mustonen, T., et al. (2003). Stimulation of ectodermal organ development by Ectodysplasin-A1. Developmental Biology, 259(1), 123–136.CrossRef
38.
go back to reference Jernvall, J., Keränen, S. V., & Thesleff, I. (2000). Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proceedings of the National Academy of Sciences, 97(26), 14444–14448.CrossRef Jernvall, J., Keränen, S. V., & Thesleff, I. (2000). Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proceedings of the National Academy of Sciences, 97(26), 14444–14448.CrossRef
39.
go back to reference Kratochwil, K., Galceran, J., Tontsch, S., Roth, W., & Grosschedl, R. (2002). FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1−/− mice. Genes & Development, 16(24), 3173–3185.CrossRef Kratochwil, K., Galceran, J., Tontsch, S., Roth, W., & Grosschedl, R. (2002). FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1−/− mice. Genes & Development, 16(24), 3173–3185.CrossRef
40.
go back to reference Klein, O. D., et al. (2006). Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Developmental Cell, 11(2), 181–190.CrossRef Klein, O. D., et al. (2006). Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Developmental Cell, 11(2), 181–190.CrossRef
41.
go back to reference Gritli-Linde, A., Bei, M., Maas, R., Zhang, X. M., Linde, A., & McMahon, A. P. (2002). Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development, 129(23), 5323–5337.CrossRef Gritli-Linde, A., Bei, M., Maas, R., Zhang, X. M., Linde, A., & McMahon, A. P. (2002). Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development, 129(23), 5323–5337.CrossRef
42.
go back to reference Nakashima, M., & Reddi, A. H. (2003). The application of bone morphogenetic proteins to dental tissue engineering. Nature Biotechnology, 21(9), 1025.CrossRef Nakashima, M., & Reddi, A. H. (2003). The application of bone morphogenetic proteins to dental tissue engineering. Nature Biotechnology, 21(9), 1025.CrossRef
43.
go back to reference Nakao, K., et al. (2007). The development of a bioengineered organ germ method. Nature Methods, 4(3), 227.CrossRef Nakao, K., et al. (2007). The development of a bioengineered organ germ method. Nature Methods, 4(3), 227.CrossRef
44.
go back to reference Hu, B., Nadiri, A., Bopp-Kuchler, S., Perrin-Schmitt, F., Wang, S., & Lesot, H. (2005). Dental epithelial histo-morphogenesis in the mouse: Positional information versus cell history. Archives of Oral Biology, 50(2), 131–136.CrossRef Hu, B., Nadiri, A., Bopp-Kuchler, S., Perrin-Schmitt, F., Wang, S., & Lesot, H. (2005). Dental epithelial histo-morphogenesis in the mouse: Positional information versus cell history. Archives of Oral Biology, 50(2), 131–136.CrossRef
45.
go back to reference Hu, B., Nadiri, A., Kuchler-Bopp, S., Perrin-Schmitt, F., Peters, H., & Lesot, H. (2006). Tissue engineering of tooth crown, root, and periodontium. Tissue Engineering, 12(8), 2069–2075.CrossRef Hu, B., Nadiri, A., Kuchler-Bopp, S., Perrin-Schmitt, F., Peters, H., & Lesot, H. (2006). Tissue engineering of tooth crown, root, and periodontium. Tissue Engineering, 12(8), 2069–2075.CrossRef
46.
go back to reference Ikeda, E., & Tsuji, T. (2008). Growing bioengineered teeth from single cells: Potential for dental regenerative medicine. Expert Opinion on Biological Therapy, 8(6), 735–744.CrossRef Ikeda, E., & Tsuji, T. (2008). Growing bioengineered teeth from single cells: Potential for dental regenerative medicine. Expert Opinion on Biological Therapy, 8(6), 735–744.CrossRef
47.
go back to reference Lechguer, A. N., et al. (2011). Cell differentiation and matrix organization in engineered teeth. Journal of Dental Research, 90(5), 583–589.CrossRef Lechguer, A. N., et al. (2011). Cell differentiation and matrix organization in engineered teeth. Journal of Dental Research, 90(5), 583–589.CrossRef
48.
go back to reference Oshima, M., & Tsuji, T. (2015). Whole tooth regeneration as a future dental treatment. In Engineering Mineralized and Load Bearing Tissues (pp. 255–269). Cham: Springer.CrossRef Oshima, M., & Tsuji, T. (2015). Whole tooth regeneration as a future dental treatment. In Engineering Mineralized and Load Bearing Tissues (pp. 255–269). Cham: Springer.CrossRef
49.
go back to reference Hu, X., et al. (2014). Conserved odontogenic potential in embryonic dental tissues. Journal of Dental Research, 93(5), 490–495.CrossRef Hu, X., et al. (2014). Conserved odontogenic potential in embryonic dental tissues. Journal of Dental Research, 93(5), 490–495.CrossRef
50.
go back to reference Ohazama, A., Modino, S., Miletich, I., & Sharpe, P. (2004). Stem-cell-based tissue engineering of murine teeth. Journal of Dental Research, 83(7), 518–522.CrossRef Ohazama, A., Modino, S., Miletich, I., & Sharpe, P. (2004). Stem-cell-based tissue engineering of murine teeth. Journal of Dental Research, 83(7), 518–522.CrossRef
51.
go back to reference Otsu, K., et al. (2011). Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells and Development, 21(7), 1156–1164.CrossRef Otsu, K., et al. (2011). Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells and Development, 21(7), 1156–1164.CrossRef
52.
go back to reference Wen, Y., et al. (2012). Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Engineering Part A, 18(15–16), 1677–1685.CrossRef Wen, Y., et al. (2012). Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Engineering Part A, 18(15–16), 1677–1685.CrossRef
53.
go back to reference Cai, J., et al. (2013). Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regeneration, 2(1), 6.CrossRef Cai, J., et al. (2013). Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regeneration, 2(1), 6.CrossRef
54.
go back to reference Wang, B., et al. (2010). Induction of human keratinocytes into enamel-secreting ameloblasts. Developmental Biology, 344(2), 795–799.CrossRef Wang, B., et al. (2010). Induction of human keratinocytes into enamel-secreting ameloblasts. Developmental Biology, 344(2), 795–799.CrossRef
55.
go back to reference Chen, Y., et al. (2015). Human umbilical cord mesenchymal stem cells: A new therapeutic option for tooth regeneration. Stem Cells International, 2015, 1. Chen, Y., et al. (2015). Human umbilical cord mesenchymal stem cells: A new therapeutic option for tooth regeneration. Stem Cells International, 2015, 1.
56.
go back to reference Young, C., Terada, S., Vacanti, J., Honda, M., Bartlett, J., & Yelick, P. (2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. Journal of Dental Research, 81(10), 695–700.CrossRef Young, C., Terada, S., Vacanti, J., Honda, M., Bartlett, J., & Yelick, P. (2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. Journal of Dental Research, 81(10), 695–700.CrossRef
57.
go back to reference Angelova Volponi, A., Kawasaki, M., & Sharpe, P. (2013). Adult human gingival epithelial cells as a source for whole-tooth bioengineering. Journal of Dental Research, 92(4), 329–334.CrossRef Angelova Volponi, A., Kawasaki, M., & Sharpe, P. (2013). Adult human gingival epithelial cells as a source for whole-tooth bioengineering. Journal of Dental Research, 92(4), 329–334.CrossRef
58.
go back to reference Kuchler-Bopp, S., et al. (2017). Promoting bioengineered tooth innervation using nanostructured and hybrid scaffolds. Acta Biomaterialia, 50, 493–501.CrossRef Kuchler-Bopp, S., et al. (2017). Promoting bioengineered tooth innervation using nanostructured and hybrid scaffolds. Acta Biomaterialia, 50, 493–501.CrossRef
59.
go back to reference Chen, G., et al. (2015). Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials, 52, 56–70.CrossRef Chen, G., et al. (2015). Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials, 52, 56–70.CrossRef
60.
go back to reference Rasperini, G., et al. (2015). 3D-printed bioresorbable scaffold for periodontal repair. Journal of Dental Research, 94(9_suppl), 153S–157S.CrossRef Rasperini, G., et al. (2015). 3D-printed bioresorbable scaffold for periodontal repair. Journal of Dental Research, 94(9_suppl), 153S–157S.CrossRef
61.
go back to reference Zhang, Y., et al. (2006). Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering. Biochemical and Biophysical Research Communications, 344(1), 362–369.CrossRef Zhang, Y., et al. (2006). Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering. Biochemical and Biophysical Research Communications, 344(1), 362–369.CrossRef
62.
go back to reference Zhang, W., Vazquez, B., Oreadi, D., & Yelick, P. (2017). Decellularized tooth bud scaffolds for tooth regeneration. Journal of Dental Research, 96(5), 516–523.CrossRef Zhang, W., Vazquez, B., Oreadi, D., & Yelick, P. (2017). Decellularized tooth bud scaffolds for tooth regeneration. Journal of Dental Research, 96(5), 516–523.CrossRef
63.
go back to reference Song, J., Takimoto, K., Jeon, M., Vadakekalam, J., Ruparel, N., & Diogenes, A. (2017). Decellularized human dental pulp as a scaffold for regenerative endodontics. Journal of Dental Research, 96(6), 640–646.CrossRef Song, J., Takimoto, K., Jeon, M., Vadakekalam, J., Ruparel, N., & Diogenes, A. (2017). Decellularized human dental pulp as a scaffold for regenerative endodontics. Journal of Dental Research, 96(6), 640–646.CrossRef
64.
go back to reference Traphagen, S. B., et al. (2012). Characterization of natural, decellularized and reseeded porcine tooth bud matrices. Biomaterials, 33(21), 5287–5296.CrossRef Traphagen, S. B., et al. (2012). Characterization of natural, decellularized and reseeded porcine tooth bud matrices. Biomaterials, 33(21), 5287–5296.CrossRef
65.
go back to reference Hu, L., et al. (2017). Decellularized swine dental pulp as a bioscaffold for pulp regeneration. BioMed Research International, 2017, 9342714. Hu, L., et al. (2017). Decellularized swine dental pulp as a bioscaffold for pulp regeneration. BioMed Research International, 2017, 9342714.
66.
go back to reference Owaki, T., Shimizu, T., Yamato, M., & Okano, T. (2014). Cell sheet engineering for regenerative medicine: Current challenges and strategies. Biotechnology Journal, 9(7), 904–914.CrossRef Owaki, T., Shimizu, T., Yamato, M., & Okano, T. (2014). Cell sheet engineering for regenerative medicine: Current challenges and strategies. Biotechnology Journal, 9(7), 904–914.CrossRef
67.
go back to reference Okano, T. (2014). Current progress of cell sheet tissue engineering and future perspective. Tissue Engineering Part A, 20(9–10), 1353–1354.CrossRef Okano, T. (2014). Current progress of cell sheet tissue engineering and future perspective. Tissue Engineering Part A, 20(9–10), 1353–1354.CrossRef
68.
go back to reference Yang, B., et al. (2012). Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold. Biomaterials, 33(8), 2449–2461.CrossRef Yang, B., et al. (2012). Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix-based scaffold. Biomaterials, 33(8), 2449–2461.CrossRef
69.
go back to reference Zhou, Y., Li, Y., Mao, L., & Peng, H. (2012). Periodontal healing by periodontal ligament cell sheets in a teeth replantation model. Archives of Oral Biology, 57(2), 169–176.CrossRef Zhou, Y., Li, Y., Mao, L., & Peng, H. (2012). Periodontal healing by periodontal ligament cell sheets in a teeth replantation model. Archives of Oral Biology, 57(2), 169–176.CrossRef
70.
go back to reference Na, S., et al. (2016). Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet. Journal of Tissue Engineering and Regenerative Medicine, 10(3), 261–270.CrossRef Na, S., et al. (2016). Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet. Journal of Tissue Engineering and Regenerative Medicine, 10(3), 261–270.CrossRef
71.
go back to reference Wei, F., et al. (2013). Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine. Stem Cells and Development, 22(12), 1752–1762.CrossRef Wei, F., et al. (2013). Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine. Stem Cells and Development, 22(12), 1752–1762.CrossRef
72.
go back to reference Wise, G., & King, G. (2008). Mechanisms of tooth eruption and orthodontic tooth movement. Journal of Dental Research, 87(5), 414–434.CrossRef Wise, G., & King, G. (2008). Mechanisms of tooth eruption and orthodontic tooth movement. Journal of Dental Research, 87(5), 414–434.CrossRef
73.
go back to reference Wise, G., Frazier-Bowers, S., & D’souza, R. (2002). Cellular, molecular, and genetic determinants of tooth eruption. Critical Reviews in Oral Biology & Medicine, 13(4), 323–335.CrossRef Wise, G., Frazier-Bowers, S., & D’souza, R. (2002). Cellular, molecular, and genetic determinants of tooth eruption. Critical Reviews in Oral Biology & Medicine, 13(4), 323–335.CrossRef
74.
go back to reference Hou, L.-T., et al. (1999). Characterization of dental follicle cells in developing mouse molar. Archives of Oral Biology, 44(9), 759–770.CrossRef Hou, L.-T., et al. (1999). Characterization of dental follicle cells in developing mouse molar. Archives of Oral Biology, 44(9), 759–770.CrossRef
75.
go back to reference Gridelli, B., & Remuzzi, G. (2000). Strategies for making more organs available for transplantation. New England Journal of Medicine, 343(6), 404–410.CrossRef Gridelli, B., & Remuzzi, G. (2000). Strategies for making more organs available for transplantation. New England Journal of Medicine, 343(6), 404–410.CrossRef
76.
go back to reference Bas, O., De-Juan-Pardo, E. M., Catelas, I., & Hutmacher, D. W. (2018). The quest for mechanically and biologically functional soft biomaterials via soft network composites. Advanced Drug Delivery Reviews, 132, 214–234.CrossRef Bas, O., De-Juan-Pardo, E. M., Catelas, I., & Hutmacher, D. W. (2018). The quest for mechanically and biologically functional soft biomaterials via soft network composites. Advanced Drug Delivery Reviews, 132, 214–234.CrossRef
77.
go back to reference Nanci, A. (2017). Ten Cate’s oral histology: Development, structure, and function. Elsevier Health Sciences, St. Louis, Missouri. Nanci, A. (2017). Ten Cate’s oral histology: Development, structure, and function. Elsevier Health Sciences, St. Louis, Missouri.
78.
go back to reference Jamal, H. (2016). Tooth organ bioengineering: Cell sources and innovative approaches. Dentistry Journal, 4(2), 18.CrossRef Jamal, H. (2016). Tooth organ bioengineering: Cell sources and innovative approaches. Dentistry Journal, 4(2), 18.CrossRef
79.
go back to reference Saxena, S. (2015). Tissue response to mechanical load in dental implants. International Journal of Oral & Maxillofacial Pathology, 6(3), 02–06. Saxena, S. (2015). Tissue response to mechanical load in dental implants. International Journal of Oral & Maxillofacial Pathology, 6(3), 02–06.
80.
go back to reference Xiu, P., et al. (2016). Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Applied Materials & Interfaces, 8(28), 17964–17975.CrossRef Xiu, P., et al. (2016). Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Applied Materials & Interfaces, 8(28), 17964–17975.CrossRef
81.
go back to reference Luukko, K., Kvinnsland, I. H., & Kettunen, P. (2005). Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Developmental Dynamics, 234(3), 482–488.CrossRef Luukko, K., Kvinnsland, I. H., & Kettunen, P. (2005). Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Developmental Dynamics, 234(3), 482–488.CrossRef
82.
go back to reference Tuisku, F., & Hildebrand, C. (1994). Evidence for a neural influence on tooth germ generation in a polyphyodont species. Developmental Biology, 165(1), 1–9.CrossRef Tuisku, F., & Hildebrand, C. (1994). Evidence for a neural influence on tooth germ generation in a polyphyodont species. Developmental Biology, 165(1), 1–9.CrossRef
83.
go back to reference Zhao, H., et al. (2014). Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell, 14(2), 160–173.CrossRef Zhao, H., et al. (2014). Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell, 14(2), 160–173.CrossRef
84.
go back to reference Kjaer, M., Beyer, N., & Secher, N. (1999). Exercise and organ transplantation. Scandinavian Journal of Medicine & Science in Sports, 9(1), 1–14.CrossRef Kjaer, M., Beyer, N., & Secher, N. (1999). Exercise and organ transplantation. Scandinavian Journal of Medicine & Science in Sports, 9(1), 1–14.CrossRef
85.
go back to reference Burns, D. R., Beck, D. A., & Nelson, S. K. (2003). A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. The Journal of Prosthetic Dentistry, 90(5), 474–497.CrossRef Burns, D. R., Beck, D. A., & Nelson, S. K. (2003). A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. The Journal of Prosthetic Dentistry, 90(5), 474–497.CrossRef
86.
go back to reference Luukko, K., et al. (2008). Secondary induction and the development of tooth nerve supply. Annals of Anatomy-Anatomischer Anzeiger, 190(2), 178–187.CrossRef Luukko, K., et al. (2008). Secondary induction and the development of tooth nerve supply. Annals of Anatomy-Anatomischer Anzeiger, 190(2), 178–187.CrossRef
87.
go back to reference Ibarra, A., et al. (2007). Cyclosporin-A enhances non-functional axonal growing after complete spinal cord transection. Brain Research, 1149, 200–209.CrossRef Ibarra, A., et al. (2007). Cyclosporin-A enhances non-functional axonal growing after complete spinal cord transection. Brain Research, 1149, 200–209.CrossRef
88.
go back to reference Kökten, T., Bécavin, T., Keller, L., Weickert, J.-L., Kuchler-Bopp, S., & Lesot, H. (2014). Immunomodulation stimulates the innervation of engineered tooth organ. PLoS One, 9(1), e86011.CrossRef Kökten, T., Bécavin, T., Keller, L., Weickert, J.-L., Kuchler-Bopp, S., & Lesot, H. (2014). Immunomodulation stimulates the innervation of engineered tooth organ. PLoS One, 9(1), e86011.CrossRef
Metadata
Title
Whole Tooth Engineering
Authors
Leila Mohammadi Amirabad
Payam Zarrintaj
Amanda Lindemuth
Lobat Tayebi
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-21583-5_19