Skip to main content
Top
Published in: Fire Technology 6/2019

27-03-2019

Wildland Fire Spread Modeling Using Convolutional Neural Networks

Authors: Jonathan L. Hodges, Brian Y. Lattimer

Published in: Fire Technology | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The computational cost of predicting wildland fire spread across large, diverse landscapes is significant using current models, which limits the ability to use simulations to develop mitigation strategies or perform forecasting. This paper presents a machine learning approach to estimate the time-resolved spatial evolution of a wildland fire front using a deep convolutional inverse graphics network (DCIGN). The DCIGN was trained and tested for wildland fire spread across simple homogeneous landscapes as well as heterogeneous landscapes having complex terrain. Data sets for training, validation, and testing were created using computational models. The model for homogeneous landscapes was based on a rate of spread from the model of Rothermel, while heterogeneous spread was modeled using FARSITE. Over 10,000 model predictions were made to determine burn maps in 6 h increments up to 24 h after ignition. Overall the predicted burn maps from the DCIGN-based approach agreed with simulation results, with mean precision, sensitivity, F-measure, and Chan–Vese similarity of 0.97, 0.92, 0.93, and 0.93, respectively. Noise in the input parameters was found to not significantly impact the DCIGN-based predictions. The computational cost of the method was found to be significantly better than the computational model for heterogeneous spatial conditions where a reduction in simulation time of \(10^{2}{-}10^{5}\) was observed. In addition, the DCIGN-based approach was shown to be capable of predicting burn maps further in the future by recursively using previous predictions as inputs to the DCIGN. The machine learning DCIGN approach was able to provide fire spread predictions at a computational cost three orders of magnitude less than current models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Weber R (1991) Modelling fire spread through fuel beds, Prog Energy Combust Sci 17(1):67CrossRef Weber R (1991) Modelling fire spread through fuel beds, Prog Energy Combust Sci 17(1):67CrossRef
2.
go back to reference Sullivan A (2008) A review of wildland fire spread modelling, 1990-present 1: physical and quasi-physical models. arXiv:0706.3074v1 [physics.geo-ph] Sullivan A (2008) A review of wildland fire spread modelling, 1990-present 1: physical and quasi-physical models. arXiv:​0706.​3074v1 [physics.geo-ph]
3.
go back to reference Sullivan A (2013) A review of wildland fire spread modelling, 1990-present 2: empirical and quasi-empirical models. arXiv:0706.4128 [physics.geo-ph] Sullivan A (2013) A review of wildland fire spread modelling, 1990-present 2: empirical and quasi-empirical models. arXiv:​0706.​4128 [physics.geo-ph]
4.
go back to reference Simeoni A (2015) Wildland fires. In: Hurley MJ, Gottuk DT, Hall JR Jr, Harada K, Kuligowski ED, Puchovsky M, Watts JM Jr, Wieczorek CJ (eds) SFPE handbook of fire protection engineering. Springer, pp 3283–3302 Simeoni A (2015) Wildland fires. In: Hurley MJ, Gottuk DT, Hall JR Jr, Harada K, Kuligowski ED, Puchovsky M, Watts JM Jr, Wieczorek CJ (eds) SFPE handbook of fire protection engineering. Springer, pp 3283–3302
5.
go back to reference Rothermel RC et al (1972) A mathematical model for predicting fire spread in wildland fuels. Technical report, USDA Forest Service Rothermel RC et al (1972) A mathematical model for predicting fire spread in wildland fuels. Technical report, USDA Forest Service
6.
go back to reference Scott JH, Burgan RE (2005) Standard fire behavior fuel models: a comprehensive set for use with rothermel’s surface fire spread model. Technical report, USDA Forest Service Scott JH, Burgan RE (2005) Standard fire behavior fuel models: a comprehensive set for use with rothermel’s surface fire spread model. Technical report, USDA Forest Service
7.
go back to reference Finney MA (1999) Mechanistic modeling of landscape fire patterns, spatial modeling of forest landscapes: approaches and applications. Cambridge University Press, Cambridge, pp 186–209 Finney MA (1999) Mechanistic modeling of landscape fire patterns, spatial modeling of forest landscapes: approaches and applications. Cambridge University Press, Cambridge, pp 186–209
8.
go back to reference Finney MA et al (1998) FARSITE, fire area simulator-model development and evaluation, vol 3. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, OgdenCrossRef Finney MA et al (1998) FARSITE, fire area simulator-model development and evaluation, vol 3. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, OgdenCrossRef
9.
go back to reference Rehm RG, McDermott RJ (2009) Fire-front propagation using the level set method. US Department of Commerce, National Institute of Standards and Technology, GaithersburgCrossRef Rehm RG, McDermott RJ (2009) Fire-front propagation using the level set method. US Department of Commerce, National Institute of Standards and Technology, GaithersburgCrossRef
10.
go back to reference Lautenberger C (2013) Wildland fire modeling with an eulerian level set method and automated calibration. Fire Saf J 62:289CrossRef Lautenberger C (2013) Wildland fire modeling with an eulerian level set method and automated calibration. Fire Saf J 62:289CrossRef
11.
go back to reference Mell W, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildland Fire 16(1):1CrossRef Mell W, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildland Fire 16(1):1CrossRef
12.
go back to reference Lattimer A, Borggaard J, Gugercin S, Luxbacher K, Lattimer B (2016) Computationally efficient wildland fire spread models. In: Proceedings of the 14th international fire science & engineering conference, pp 305–315 Lattimer A, Borggaard J, Gugercin S, Luxbacher K, Lattimer B (2016) Computationally efficient wildland fire spread models. In: Proceedings of the 14th international fire science & engineering conference, pp 305–315
13.
go back to reference Rochoux MC, Delmotte B, Cuenot B, Ricci S, Trouvé A (2013) Regional-scale simulations of wildland fire spread informed by real-time flame front observations. Proc Combust Inst 34(2):2641CrossRef Rochoux MC, Delmotte B, Cuenot B, Ricci S, Trouvé A (2013) Regional-scale simulations of wildland fire spread informed by real-time flame front observations. Proc Combust Inst 34(2):2641CrossRef
14.
go back to reference Rochoux MC, Ricci S, Lucor D, Cuenot B, Trouvé A (2014) Towards predictive data-driven simulations of wildfire spread—part i: reduced-cost ensemble Kalman filter based on a polynomial chaos surrogate model for parameter estimation. Nat Hazards Earth Syst Sci 14(11):2951CrossRef Rochoux MC, Ricci S, Lucor D, Cuenot B, Trouvé A (2014) Towards predictive data-driven simulations of wildfire spread—part i: reduced-cost ensemble Kalman filter based on a polynomial chaos surrogate model for parameter estimation. Nat Hazards Earth Syst Sci 14(11):2951CrossRef
15.
go back to reference Rochoux MC, Emery C, Ricci S, Cuenot B, Trouvé A (2015) Towards predictive data-driven simulations of wildfire spread—part ii: ensemble Kalman filter for the state estimation of a front-tracking simulator of wildfire spread. Nat Hazards Earth Syst Sci 15(8):1721CrossRef Rochoux MC, Emery C, Ricci S, Cuenot B, Trouvé A (2015) Towards predictive data-driven simulations of wildfire spread—part ii: ensemble Kalman filter for the state estimation of a front-tracking simulator of wildfire spread. Nat Hazards Earth Syst Sci 15(8):1721CrossRef
16.
go back to reference Rios O, Pastor E, Valero M, Planas E (2016) Short-term fire front spread prediction using inverse modelling and airborne infrared images. Int J Wildland Fire 25(10):1033CrossRef Rios O, Pastor E, Valero M, Planas E (2016) Short-term fire front spread prediction using inverse modelling and airborne infrared images. Int J Wildland Fire 25(10):1033CrossRef
17.
go back to reference Zhang C, Rochoux M, Tang W, Gollner M, Filippi JB, Trouvé A (2017) Evaluation of a data-driven wildland fire spread forecast model with spatially-distributed parameter estimation in simulations of the fireflux i field-scale experiment. Fire Saf J 91:758CrossRef Zhang C, Rochoux M, Tang W, Gollner M, Filippi JB, Trouvé A (2017) Evaluation of a data-driven wildland fire spread forecast model with spatially-distributed parameter estimation in simulations of the fireflux i field-scale experiment. Fire Saf J 91:758CrossRef
18.
go back to reference Gu F, Hu X (2008) In 2008 winter simulation conference, pp 2852–2860. IEEE Gu F, Hu X (2008) In 2008 winter simulation conference, pp 2852–2860. IEEE
19.
go back to reference Xue H, Gu F, Hu X (2012) Data assimilation using sequential monte carlo methods in wildfire spread simulation. ACM Trans Model Comput Simul (TOMACS) 22(4):23CrossRef Xue H, Gu F, Hu X (2012) Data assimilation using sequential monte carlo methods in wildfire spread simulation. ACM Trans Model Comput Simul (TOMACS) 22(4):23CrossRef
20.
go back to reference Da Silva W, Rochoux M, Orlande H, Colaço M, Fudym O, El Hafi M, Cuenot B, Ricci S (2014) Application of particle filters to regional-scale wildfire spread. High Temp High Press 43:415 Da Silva W, Rochoux M, Orlande H, Colaço M, Fudym O, El Hafi M, Cuenot B, Ricci S (2014) Application of particle filters to regional-scale wildfire spread. High Temp High Press 43:415
21.
go back to reference Bai F, Gu F, Hu X, Guo S (2016) Particle routing in distributed particle filters for large-scale spatial temporal systems. IEEE Trans Parallel Distrib Syst 27(2):481CrossRef Bai F, Gu F, Hu X, Guo S (2016) Particle routing in distributed particle filters for large-scale spatial temporal systems. IEEE Trans Parallel Distrib Syst 27(2):481CrossRef
22.
go back to reference Mandel J, Beezley JD, Kochanski AK, Kondratenko VY, Kim M (2012) Assimilation of perimeter data and coupling with fuel moisture in a wildland fire—atmosphere dddas. Proc Comput Sci 9:1100CrossRef Mandel J, Beezley JD, Kochanski AK, Kondratenko VY, Kim M (2012) Assimilation of perimeter data and coupling with fuel moisture in a wildland fire—atmosphere dddas. Proc Comput Sci 9:1100CrossRef
23.
go back to reference Rochoux MC, Emery C, Ricci S, Cuenot B, Trouvé A (2014) Towards predictive simulation of wildfire spread at regional scale using ensemble-based data assimilation to correct the fire front position. Fire Saf Sci 11:1443CrossRef Rochoux MC, Emery C, Ricci S, Cuenot B, Trouvé A (2014) Towards predictive simulation of wildfire spread at regional scale using ensemble-based data assimilation to correct the fire front position. Fire Saf Sci 11:1443CrossRef
24.
go back to reference Safi Y, Bouroumi A (2013) Prediction of forest fires using artificial neural networks, Appl Math Sci 7(6):271 Safi Y, Bouroumi A (2013) Prediction of forest fires using artificial neural networks, Appl Math Sci 7(6):271
25.
go back to reference Castelli M, Vanneschi L, Popovič A (2015) Predicting burned areas of forest fires: an artificial intelligence approach. Fire Ecol 11(1):106CrossRef Castelli M, Vanneschi L, Popovič A (2015) Predicting burned areas of forest fires: an artificial intelligence approach. Fire Ecol 11(1):106CrossRef
26.
go back to reference Storer J, Green R (2016) PSO trained neural networks for predicting forest fire size: a comparison of implementation and performance. In: 2016 international joint conference on neural networks (IJCNN), pp 676–683 Storer J, Green R (2016) PSO trained neural networks for predicting forest fire size: a comparison of implementation and performance. In: 2016 international joint conference on neural networks (IJCNN), pp 676–683
27.
go back to reference Naganathan H, Seshasayee SP, Kim J, Chong WK, Chou JS (2016) Wildfire predictions: determining reliable models using fused dataset. Glob J Comput Sci Technol 16(4):35–46 Naganathan H, Seshasayee SP, Kim J, Chong WK, Chou JS (2016) Wildfire predictions: determining reliable models using fused dataset. Glob J Comput Sci Technol 16(4):35–46
28.
go back to reference Cao Y, Wang M, Liu K (2017) Wildfire susceptibility assessment in southern china: a comparison of multiple methods. Int J Disaster Risk Sci 8(2):164CrossRef Cao Y, Wang M, Liu K (2017) Wildfire susceptibility assessment in southern china: a comparison of multiple methods. Int J Disaster Risk Sci 8(2):164CrossRef
29.
go back to reference McCormick RJ, Brandner TA, Allen TF (2001) Toward a theory of meso-scale wildfire modeling: a complex systems approach using artificial neural networks. Ph.D. thesis, University of Wisconsin, Madison McCormick RJ, Brandner TA, Allen TF (2001) Toward a theory of meso-scale wildfire modeling: a complex systems approach using artificial neural networks. Ph.D. thesis, University of Wisconsin, Madison
30.
go back to reference McCormick RJ (2002) On developing a meso-theoretical viewpoint of complex systems by exploring the use of artificial neural networks in modeling wildfires. In: ForestSAT symposium, Edinburgh McCormick RJ (2002) On developing a meso-theoretical viewpoint of complex systems by exploring the use of artificial neural networks in modeling wildfires. In: ForestSAT symposium, Edinburgh
31.
go back to reference LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541CrossRef LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541CrossRef
32.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25: 26th annual conference on neural information processing systems 2012, 3–6 December 2012. Lake Tahoe, NV, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25: 26th annual conference on neural information processing systems 2012, 3–6 December 2012. Lake Tahoe, NV, pp 1097–1105
34.
go back to reference Kulkarni TD, Whitney WF, Kohli P, Tenenbaum J (2015) Deep convolutional inverse graphics network. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28: annual conference on neural information processing systems 2015, 7–12 December 2015. Montreal, QC, pp 2539–2547 Kulkarni TD, Whitney WF, Kohli P, Tenenbaum J (2015) Deep convolutional inverse graphics network. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28: annual conference on neural information processing systems 2015, 7–12 December 2015. Montreal, QC, pp 2539–2547
35.
go back to reference Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R (eds) Advances in neural information processing systems 29: annual conference on neural information processing systems 2016, 5–10 December 2016. Barcelona, pp 2172–2180 Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R (eds) Advances in neural information processing systems 29: annual conference on neural information processing systems 2016, 5–10 December 2016. Barcelona, pp 2172–2180
36.
go back to reference Liu MY, Tuzel O (2016) Coupled generative adversarial networks. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R (eds) Advances in neural information processing systems 29: annual conference on neural information processing systems 2016, 5–10 December 2016. Barcelona, pp 469–477 Liu MY, Tuzel O (2016) Coupled generative adversarial networks. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R (eds) Advances in neural information processing systems 29: annual conference on neural information processing systems 2016, 5–10 December 2016. Barcelona, pp 469–477
37.
go back to reference Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2223–2232 Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2223–2232
38.
go back to reference Yi Z, Zhang H, Tan P, Gong M (2017) Dualgan: unsupervised dual learning for image-to-image translation. In: Proceedings of the IEEE international conference on computer vision, pp 2849–2857 Yi Z, Zhang H, Tan P, Gong M (2017) Dualgan: unsupervised dual learning for image-to-image translation. In: Proceedings of the IEEE international conference on computer vision, pp 2849–2857
39.
go back to reference Albini FA (1976) Estimating wildfire behavior and effects. Technical report, USDA Forest Service Albini FA (1976) Estimating wildfire behavior and effects. Technical report, USDA Forest Service
40.
go back to reference Andrews PL (2012) Modeling wind adjustment factor and midflame wind speed for Rothermel’s surface fire spread model, General technical reports RMRS-GTR-266, vol 39. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, p 213 Andrews PL (2012) Modeling wind adjustment factor and midflame wind speed for Rothermel’s surface fire spread model, General technical reports RMRS-GTR-266, vol 39. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, p 213
42.
go back to reference Green D, Gill AM, Noble I (1983) Fire shapes and the adequacy of fire-spread models. Ecol Model 20(1):33CrossRef Green D, Gill AM, Noble I (1983) Fire shapes and the adequacy of fire-spread models. Ecol Model 20(1):33CrossRef
43.
go back to reference Andrews PL (2009) Behaveplus fire modeling system, version 5.0: variables. General technical reports RMRS-GTR-213 revised, vol 111. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, p 213 Andrews PL (2009) Behaveplus fire modeling system, version 5.0: variables. General technical reports RMRS-GTR-213 revised, vol 111. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, p 213
44.
go back to reference Nelson RM Jr (2002) An effective wind speed for models of fire spread. Int J Wildland Fire 11(2):153CrossRef Nelson RM Jr (2002) An effective wind speed for models of fire spread. Int J Wildland Fire 11(2):153CrossRef
45.
go back to reference Rollins MG (2009) Landfire: a nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildland Fire 18(3):235CrossRef Rollins MG (2009) Landfire: a nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildland Fire 18(3):235CrossRef
46.
go back to reference Maas Al, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. Proc ICML 30:3 Maas Al, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. Proc ICML 30:3
47.
go back to reference He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
48.
go back to reference Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Accessed 14 Apr 2018 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://​www.​tensorflow.​org/​. Accessed 14 Apr 2018
49.
go back to reference Filippi JB, Mallet V, Nader B (2014) Representation and evaluation of wildfire propagation simulations. Int J Wildland Fire 23(1):46CrossRef Filippi JB, Mallet V, Nader B (2014) Representation and evaluation of wildfire propagation simulations. Int J Wildland Fire 23(1):46CrossRef
50.
go back to reference Zhang C, Collin A, Moireau P, Trouvé A, Rochoux M (2019) Front shape similarity measure for data-driven simulations of wildland fire spread based on state estimation: application to the rxcadre field-scale experiment. Proc Combust Inst 37(3):4201CrossRef Zhang C, Collin A, Moireau P, Trouvé A, Rochoux M (2019) Front shape similarity measure for data-driven simulations of wildland fire spread based on state estimation: application to the rxcadre field-scale experiment. Proc Combust Inst 37(3):4201CrossRef
51.
Metadata
Title
Wildland Fire Spread Modeling Using Convolutional Neural Networks
Authors
Jonathan L. Hodges
Brian Y. Lattimer
Publication date
27-03-2019
Publisher
Springer US
Published in
Fire Technology / Issue 6/2019
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-019-00846-4

Other articles of this Issue 6/2019

Fire Technology 6/2019 Go to the issue