Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

08-09-2021 | Regular Paper | Issue 11/2021

Knowledge and Information Systems 11/2021

Word and graph attention networks for semi-supervised classification

Journal:
Knowledge and Information Systems > Issue 11/2021
Authors:
Jing Zhang, Mengxi Li, Kaisheng Gao, Shunmei Meng, Cangqi Zhou
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Graph attention networks are effective graph neural networks that perform graph embedding for semi-supervised learning, which considers the neighbors of a node when learning its features. This paper presents a novel attention-based graph neural network that introduces an attention mechanism in the word-represented features of a node together incorporating the neighbors’ attention in the embedding process. Instead of using a vector as the feature of a node in the traditional graph attention networks, the proposed method uses a 2D matrix to represent a node, where each row in the matrix stands for a different attention distribution against the original word-represented features of a node. Then, the compressed features are fed into a graph attention layer that aggregates the matrix representation of the node and its neighbor nodes with different attention weights as a new representation. By stacking several graph attention layers, it obtains the final representation of nodes as matrices, which considers both that the neighbors of a node have different importance and that the words also have different importance in their original features. Experimental results on three citation network datasets show that the proposed method significantly outperforms eight state-of-the-art methods in semi-supervised classification tasks.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 11/2021

Knowledge and Information Systems 11/2021 Go to the issue

Premium Partner

    Image Credits