Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2018

20-02-2018

Workability Limits of Magnesium Alloy AZ31B Subjected to Equal Channel Angular Pressing

Authors: M. S. Arun, Uday Chakkingal

Published in: Journal of Materials Engineering and Performance | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Equal channel angular pressing (ECAP) is an important severe plastic deformation process to produce ultrafine grained microstructures in metals and alloys. Magnesium and its alloys generally possess poor workability at temperatures below 250 °C. This investigation examines the influence of different passes and processing routes of ECAP on improving the workability of Mg alloy AZ31B. ECAP was carried out for three passes using a die of angle 120° using processing routes Bc and C. The operating temperature was 523 K for the first pass and 423 K for the subsequent two passes. The resultant microstructure and mechanical properties were determined. Workability of the alloy at 423 K (150 °C) was determined using upsetting experiments on cylindrical specimens machined from the annealed and ECAPed samples. Workability limit diagrams have been constructed for the various processed conditions. The workability data generated were also analyzed using five different workability criteria (also referred to as ductile fracture models) and the material constants for these five models were evaluated. Specimens processed by two passes through route C (pass 2C) exhibits better workability compared to other passes since the workability limit line after this pass shows maximum safe working area and lies above the other workability lines. Among the five different workability criteria investigated, the Freudenthal workability criterion is more suitable for prediction of failure in this alloy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981CrossRef R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981CrossRef
2.
go back to reference A. Sivaraman and U. Chakkingal, Investigations on Workability of Commercial Purity Aluminum Processed by Equal Channel Angular Pressing, J. Mater. Process. Technol., 2008, 202(1–3), p 543–548CrossRef A. Sivaraman and U. Chakkingal, Investigations on Workability of Commercial Purity Aluminum Processed by Equal Channel Angular Pressing, J. Mater. Process. Technol., 2008, 202(1–3), p 543–548CrossRef
3.
go back to reference R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Mater. Sci. Eng. A, 1993, 168(2), p 141–148CrossRef R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Mater. Sci. Eng. A, 1993, 168(2), p 141–148CrossRef
4.
go back to reference V.M. Segal, Equal Channel Angular Extrusion: From Macromechanics to Structure Formation, Mater. Sci. Eng. A, 1999, 271(1), p 322–333CrossRef V.M. Segal, Equal Channel Angular Extrusion: From Macromechanics to Structure Formation, Mater. Sci. Eng. A, 1999, 271(1), p 322–333CrossRef
5.
go back to reference K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon, Development of a Multi-Pass Facility for Equal-Channel Angular Pressing to High Total Strains, Mater. Sci. Eng. A, 2000, 281(1), p 82–87CrossRef K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon, Development of a Multi-Pass Facility for Equal-Channel Angular Pressing to High Total Strains, Mater. Sci. Eng. A, 2000, 281(1), p 82–87CrossRef
6.
go back to reference Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials, Scr. Mater., 1996, 35(2), p 143–146CrossRef Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials, Scr. Mater., 1996, 35(2), p 143–146CrossRef
7.
go back to reference K. Furuno, H. Akamatsu, K. Oh-ishi, and M. Furukawa, Microstructural Development in Equal-Channel Angular Pressing Using a 60 Die, Acta Mater., 2004, 52(9), p 2497–2507CrossRef K. Furuno, H. Akamatsu, K. Oh-ishi, and M. Furukawa, Microstructural Development in Equal-Channel Angular Pressing Using a 60 Die, Acta Mater., 2004, 52(9), p 2497–2507CrossRef
8.
go back to reference M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, The Shearing Characteristics Associated with Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 1998, 257(2), p 328–332CrossRef M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, The Shearing Characteristics Associated with Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 1998, 257(2), p 328–332CrossRef
9.
go back to reference T. Hosaka, S. Yoshihara, I. Amanina, and B.J. Macdonald, Influence of Grain Refinement and Residual Stress on Corrosion Behavior of AZ31 Magnesium Alloy Processed by ECAP in RPMI- 1640 Medium, Procedia Eng., 2017, 184, p 432–441CrossRef T. Hosaka, S. Yoshihara, I. Amanina, and B.J. Macdonald, Influence of Grain Refinement and Residual Stress on Corrosion Behavior of AZ31 Magnesium Alloy Processed by ECAP in RPMI- 1640 Medium, Procedia Eng., 2017, 184, p 432–441CrossRef
10.
go back to reference K. Xia, J.T. Wang, X. Wu, G. Chen, and M. Gurvan, Equal Channel Angular Pressing of Magnesium Alloy AZ31, Mater. Sci. Eng. A, 2005, 410, p 324–327CrossRef K. Xia, J.T. Wang, X. Wu, G. Chen, and M. Gurvan, Equal Channel Angular Pressing of Magnesium Alloy AZ31, Mater. Sci. Eng. A, 2005, 410, p 324–327CrossRef
11.
go back to reference M. Janeček, M. Popov, M.G. Krieger, R.J. Hellmig, and Y. Estrin, Mechanical Properties and Microstructure of a Mg Alloy AZ31 Prepared by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2007, 462(1), p 116–120CrossRef M. Janeček, M. Popov, M.G. Krieger, R.J. Hellmig, and Y. Estrin, Mechanical Properties and Microstructure of a Mg Alloy AZ31 Prepared by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2007, 462(1), p 116–120CrossRef
12.
go back to reference P. Kumar and U. Chakkingal, Workability Limits of Commercial Purity Titanium Subjected to Equal Channel Angular Pressing, Mater. Sci. Forum, 2008, 586, p 275–280CrossRef P. Kumar and U. Chakkingal, Workability Limits of Commercial Purity Titanium Subjected to Equal Channel Angular Pressing, Mater. Sci. Forum, 2008, 586, p 275–280CrossRef
13.
go back to reference A.M. Freudenthal, The Inelastic Behaviour of Solids, Wiley, London, 1950 A.M. Freudenthal, The Inelastic Behaviour of Solids, Wiley, London, 1950
14.
go back to reference M.G. Cockcroft and D.J. Latham, Ductility and the Workability of Metals, J. Inst. Met., 1968, 96, p 33–39 M.G. Cockcroft and D.J. Latham, Ductility and the Workability of Metals, J. Inst. Met., 1968, 96, p 33–39
15.
go back to reference P. Brozzo, B. Deluca, R. Rendina, A New Method for the Prediction of Formability Limits in Metal Sheets, in Proceedings of 7th Biennial Conference IDDR (1972) P. Brozzo, B. Deluca, R. Rendina, A New Method for the Prediction of Formability Limits in Metal Sheets, in Proceedings of 7th Biennial Conference IDDR (1972)
16.
go back to reference S.I. Oh, C.C. Chen, and S. Kobayashi, Ductile Fracture in Axisymmetric Extrusion and Drawing, J. Eng. Ind. Trans. ASME, 1979, 101(1), p 36–44CrossRef S.I. Oh, C.C. Chen, and S. Kobayashi, Ductile Fracture in Axisymmetric Extrusion and Drawing, J. Eng. Ind. Trans. ASME, 1979, 101(1), p 36–44CrossRef
17.
go back to reference M. Oyane, Criteria of Ductile Fracture Strain, Bull. JSME, 1972, 15(90), p 1507–1513CrossRef M. Oyane, Criteria of Ductile Fracture Strain, Bull. JSME, 1972, 15(90), p 1507–1513CrossRef
18.
go back to reference M. Oyane, T. Sato, K. Okimoto, and S. Shima, Criteria for Ductile Fracture and their Applications, J. Mech. Work. Technol., 1980, 4, p 65–81CrossRef M. Oyane, T. Sato, K. Okimoto, and S. Shima, Criteria for Ductile Fracture and their Applications, J. Mech. Work. Technol., 1980, 4, p 65–81CrossRef
19.
go back to reference S.V.S.N. Murty, B.N. Rao, and B.P. Kashyap, Improved Ductile Fracture Criterion for Cold Forming of Spheroidised Steel, J. Mater. Process. Technol., 2004, 147(1), p 94–101CrossRef S.V.S.N. Murty, B.N. Rao, and B.P. Kashyap, Improved Ductile Fracture Criterion for Cold Forming of Spheroidised Steel, J. Mater. Process. Technol., 2004, 147(1), p 94–101CrossRef
20.
go back to reference R.B. Figueiredo and T.G. Langdon, Principles of Grain Refinement and Superplastic Flow in Magnesium Alloys Processed by ECAP, Mater. Sci. Eng. A, 2009, 501, p 105–114CrossRef R.B. Figueiredo and T.G. Langdon, Principles of Grain Refinement and Superplastic Flow in Magnesium Alloys Processed by ECAP, Mater. Sci. Eng. A, 2009, 501, p 105–114CrossRef
21.
go back to reference S. Suwas, G. Gottstein, and R. Kumar, Evolution of Crystallographic Texture During Equal Channel Angular Extrusion (ECAE) and Its Effects on Secondary Processing of Magnesium, Mater. Sci. Eng. A, 2007, 471(1–2), p 1–14CrossRef S. Suwas, G. Gottstein, and R. Kumar, Evolution of Crystallographic Texture During Equal Channel Angular Extrusion (ECAE) and Its Effects on Secondary Processing of Magnesium, Mater. Sci. Eng. A, 2007, 471(1–2), p 1–14CrossRef
22.
go back to reference S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261CrossRef S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261CrossRef
23.
go back to reference R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation, J. Mater. Res., 2002, 17(1), p 5–8CrossRef R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation, J. Mater. Res., 2002, 17(1), p 5–8CrossRef
24.
go back to reference M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52(17), p 5093–5103CrossRef M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52(17), p 5093–5103CrossRef
25.
go back to reference D. Mohr, M.-A. Chevin, and L. Greve, Deformation Behavior of Magnesium Extrusions with Strong Basal Texture: Experiments and Modeling, J. Appl. Mech., 2013, 80(6), p 61002CrossRef D. Mohr, M.-A. Chevin, and L. Greve, Deformation Behavior of Magnesium Extrusions with Strong Basal Texture: Experiments and Modeling, J. Appl. Mech., 2013, 80(6), p 61002CrossRef
Metadata
Title
Workability Limits of Magnesium Alloy AZ31B Subjected to Equal Channel Angular Pressing
Authors
M. S. Arun
Uday Chakkingal
Publication date
20-02-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3229-6

Other articles of this Issue 3/2018

Journal of Materials Engineering and Performance 3/2018 Go to the issue

Premium Partners