Skip to main content
Top

2025 | OriginalPaper | Chapter

Would You Trust an AI Doctor? Building Reliable Medical Predictions with Kernel Dropout Uncertainty

Authors : Ubaid Azam, Imran Razzak, Shelly Vishwakarma, Hakim Hacid, Dell Zhang, Shoaib Jameel

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The growing capabilities of AI raise questions about their trustworthiness in healthcare, particularly due to opaque decision-making and limited data availability. This paper proposes a novel approach to address these challenges, introducing a Bayesian Monte Carlo Dropout model with kernel modelling. Our model is designed to enhance reliability on small medical datasets, a crucial barrier to the wider adoption of AI in healthcare. This model leverages existing language models for improved effectiveness and seamlessly integrates with current workflows. We demonstrate significant improvements in reliability, even with limited data, offering a promising step towards building trust in AI-driven medical predictions and unlocking its potential to improve patient care.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Afzal, M., Hussain, J., Abbas, A., Maqbool, H.: Multi-class clinical text annotation and classification using BERT-based active learning. SSRN 4081033 (2022) Afzal, M., Hussain, J., Abbas, A., Maqbool, H.: Multi-class clinical text annotation and classification using BERT-based active learning. SSRN 4081033 (2022)
2.
go back to reference Bercea, C.I., Wiestler, B., Rueckert, D., Schnabel, J.A.: Generalizing unsupervised anomaly detection: towards unbiased pathology screening. In: Medical Imaging with Deep Learning, pp. 39–52. PMLR (2024) Bercea, C.I., Wiestler, B., Rueckert, D., Schnabel, J.A.: Generalizing unsupervised anomaly detection: towards unbiased pathology screening. In: Medical Imaging with Deep Learning, pp. 39–52. PMLR (2024)
3.
go back to reference Chanda, D., Onim, M.S.H., Nyeem, H., Ovi, T.B., Naba, S.S.: DcensNet: a new deep convolutional ensemble network for skin cancer classification. Biomed. Signal Process. Control 89, 105757 (2024)CrossRef Chanda, D., Onim, M.S.H., Nyeem, H., Ovi, T.B., Naba, S.S.: DcensNet: a new deep convolutional ensemble network for skin cancer classification. Biomed. Signal Process. Control 89, 105757 (2024)CrossRef
4.
go back to reference Damianou, A., Lawrence, N.D.: Deep Gaussian processes. In: Artificial Intelligence and Statistics, pp. 207–215. PMLR (2013) Damianou, A., Lawrence, N.D.: Deep Gaussian processes. In: Artificial Intelligence and Statistics, pp. 207–215. PMLR (2013)
5.
go back to reference Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:​1810.​04805 (2018)
6.
go back to reference Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016) Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)
7.
go back to reference Gao, S., et al.: Limitations of transformers on clinical text classification. IEEE J. Biomed. Health Inform. 25(9), 3596–3607 (2021)CrossRef Gao, S., et al.: Limitations of transformers on clinical text classification. IEEE J. Biomed. Health Inform. 25(9), 3596–3607 (2021)CrossRef
8.
go back to reference Griffiths, T., Jordan, M., Tenenbaum, J., Blei, D.: Hierarchical topic models and the nested Chinese restaurant process. Adv. Neural Inf. Process. Syst. 16 (2003) Griffiths, T., Jordan, M., Tenenbaum, J., Blei, D.: Hierarchical topic models and the nested Chinese restaurant process. Adv. Neural Inf. Process. Syst. 16 (2003)
9.
go back to reference Joshi, M., Pezzotti, N., Browne, J.T.: Human–AI relationship in healthcare. In: Explainable AI in Healthcare, pp. 1–22. Chapman and Hall/CRC (2024) Joshi, M., Pezzotti, N., Browne, J.T.: Human–AI relationship in healthcare. In: Explainable AI in Healthcare, pp. 1–22. Chapman and Hall/CRC (2024)
10.
go back to reference Kong, M., Huang, Z., Kuang, K., Zhu, Q., Wu, F.: TranSQ: transformer-based semantic query for medical report generation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 610–620. Springer (2022) Kong, M., Huang, Z., Kuang, K., Zhu, Q., Wu, F.: TranSQ: transformer-based semantic query for medical report generation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 610–620. Springer (2022)
11.
go back to reference Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019) Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:​1909.​11942 (2019)
12.
go back to reference Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)MathSciNetCrossRef Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)MathSciNetCrossRef
15.
go back to reference Longoni, C., Bonezzi, A., Morewedge, C.K.: Resistance to medical artificial intelligence. J. Consum. Res. 46(4), 629–650 (2019)CrossRef Longoni, C., Bonezzi, A., Morewedge, C.K.: Resistance to medical artificial intelligence. J. Consum. Res. 46(4), 629–650 (2019)CrossRef
16.
go back to reference Moore, W., Frye, S.: Review of HIPAA, part 2: limitations, rights, violations, and role for the imaging technologist. J. Nucl. Med. Technol. 48(1), 17–23 (2020)CrossRef Moore, W., Frye, S.: Review of HIPAA, part 2: limitations, rights, violations, and role for the imaging technologist. J. Nucl. Med. Technol. 48(1), 17–23 (2020)CrossRef
17.
go back to reference Peng, Y., Yan, S., Lu, Z.: Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets. arXiv preprint arXiv:1906.05474 (2019) Peng, Y., Yan, S., Lu, Z.: Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets. arXiv preprint arXiv:​1906.​05474 (2019)
18.
go back to reference Petch, J., Di, S., Nelson, W.: Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can. J. Cardiol. 38(2), 204–213 (2022)CrossRef Petch, J., Di, S., Nelson, W.: Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can. J. Cardiol. 38(2), 204–213 (2022)CrossRef
19.
go back to reference Rafi, T.H., Shubair, R.M., Farhan, F., Hoque, M.Z., Quayyum, F.M.: Recent advances in computer-aided medical diagnosis using machine learning algorithms with optimization techniques. IEEE Access 9, 137847–137868 (2021)CrossRef Rafi, T.H., Shubair, R.M., Farhan, F., Hoque, M.Z., Quayyum, F.M.: Recent advances in computer-aided medical diagnosis using machine learning algorithms with optimization techniques. IEEE Access 9, 137847–137868 (2021)CrossRef
20.
go back to reference Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019) Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:​1910.​01108 (2019)
21.
go back to reference Shelmanov, A., Tsymbalov, E., Puzyrev, D., Fedyanin, K., Panchenko, A., Panov, M.: How certain is your transformer? In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1833–1840 (2021) Shelmanov, A., Tsymbalov, E., Puzyrev, D., Fedyanin, K., Panchenko, A., Panov, M.: How certain is your transformer? In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1833–1840 (2021)
22.
go back to reference Singh, A., Guntu, M., Bhimireddy, A.R., Gichoya, J.W., Purkayastha, S.: Multi-label natural language processing to identify diagnosis and procedure codes from MIMIC-III inpatient notes. arXiv preprint arXiv:2003.07507 (2020) Singh, A., Guntu, M., Bhimireddy, A.R., Gichoya, J.W., Purkayastha, S.: Multi-label natural language processing to identify diagnosis and procedure codes from MIMIC-III inpatient notes. arXiv preprint arXiv:​2003.​07507 (2020)
23.
go back to reference Spasic, I., Nenadic, G., et al.: Clinical text data in machine learning: systematic review. JMIR Med. Inform. 8(3), e17984 (2020)CrossRef Spasic, I., Nenadic, G., et al.: Clinical text data in machine learning: systematic review. JMIR Med. Inform. 8(3), e17984 (2020)CrossRef
24.
go back to reference Tanneru, S.H., Agarwal, C., Lakkaraju, H.: Quantifying uncertainty in natural language explanations of large language models. arXiv preprint arXiv:2311.03533 (2023) Tanneru, S.H., Agarwal, C., Lakkaraju, H.: Quantifying uncertainty in natural language explanations of large language models. arXiv preprint arXiv:​2311.​03533 (2023)
25.
go back to reference Wang, G., et al.: Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial. Nat. Med. 29(10), 2633–2642 (2023)CrossRef Wang, G., et al.: Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial. Nat. Med. 29(10), 2633–2642 (2023)CrossRef
26.
go back to reference Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 32 (2019) Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 32 (2019)
27.
go back to reference Yao, L., Jin, Z., Mao, C., Zhang, Y., Luo, Y.: Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. J. Am. Med. Inform. Assoc. 26(12), 1632–1636 (2019)CrossRef Yao, L., Jin, Z., Mao, C., Zhang, Y., Luo, Y.: Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. J. Am. Med. Inform. Assoc. 26(12), 1632–1636 (2019)CrossRef
28.
go back to reference Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B.: Transformers for multi-label classification of medical text: an empirical comparison. In: International Conference on Artificial Intelligence in Medicine, pp. 114–123. Springer (2021) Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B.: Transformers for multi-label classification of medical text: an empirical comparison. In: International Conference on Artificial Intelligence in Medicine, pp. 114–123. Springer (2021)
29.
go back to reference Young, A.L., et al.: Data-driven modelling of neurodegenerative disease progression: thinking outside the black box. Nat. Rev. Neurosci. 25(2), 1–20 (2024) Young, A.L., et al.: Data-driven modelling of neurodegenerative disease progression: thinking outside the black box. Nat. Rev. Neurosci. 25(2), 1–20 (2024)
30.
go back to reference Zhu, R., Tu, X., Huang, J.X.: Utilizing BERT for biomedical and clinical text mining. In: Data Analytics in Biomedical Engineering and Healthcare, pp. 73–103. Elsevier (2021) Zhu, R., Tu, X., Huang, J.X.: Utilizing BERT for biomedical and clinical text mining. In: Data Analytics in Biomedical Engineering and Healthcare, pp. 73–103. Elsevier (2021)
Metadata
Title
Would You Trust an AI Doctor? Building Reliable Medical Predictions with Kernel Dropout Uncertainty
Authors
Ubaid Azam
Imran Razzak
Shelly Vishwakarma
Hakim Hacid
Dell Zhang
Shoaib Jameel
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_24

Premium Partner