Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Wrinkles Obtained by Frontal Polymerization/Vitrification

Authors : C. M. González-Henríquez, M. A. Sarabia Vallejos, Juan Rodríguez-Hernández

Published in: Wrinkled Polymer Surfaces

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Frontal polymerization (FP) or vitrification consists in the generation of a reaction front, in a localized sector of the material, that travels in a particular direction. Their remarkable flexibility permits to controllably polymerize materials with different molecular weights and variable chemical nature. One of the advantages of FP is that it is possible to generate thin layers of a polymerized material over an unpolymerized composite, being suitable for creating wrinkled patterns in homogenous polymeric materials. In this chapter, the main types of frontal polymerization are described, as well as several examples and applications which take advantage of this methodology to form wrinkled patterns of variable materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N.M. Chechilo, R.J. Khvilivitskii, N.S. Enikolopyan, Phenomenon of polymerization reaction spreading. Dokl. Akad. Nauk SSSR 204, 1180 (1972) N.M. Chechilo, R.J. Khvilivitskii, N.S. Enikolopyan, Phenomenon of polymerization reaction spreading. Dokl. Akad. Nauk SSSR 204, 1180 (1972)
2.
go back to reference J.A. Pojman, Frontal Polymerization, vol 4 (Elsevier B.V, Amsterdam, 2012) J.A. Pojman, Frontal Polymerization, vol 4 (Elsevier B.V, Amsterdam, 2012)
3.
go back to reference C. Nason, T. Roper, C. Hoyle, et al., UV-induced frontal polymerization of multifunctional (Meth)acrylates. Macromolecules 38, 5506–5512 (2005)CrossRef C. Nason, T. Roper, C. Hoyle, et al., UV-induced frontal polymerization of multifunctional (Meth)acrylates. Macromolecules 38, 5506–5512 (2005)CrossRef
4.
go back to reference S.J. Ma, S.J. Mannino, N.J. Wagner, et al., Photodirected formation and control of wrinkles on a Thiol−ene elastomer. ACS Macro Lett. 2, 474–477 (2013)CrossRef S.J. Ma, S.J. Mannino, N.J. Wagner, et al., Photodirected formation and control of wrinkles on a Thiol−ene elastomer. ACS Macro Lett. 2, 474–477 (2013)CrossRef
5.
go back to reference M. Nania, F. Foglia, O.K. Matar, et al., Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation. Nanoscale 9, 2030–2037 (2017)CrossRef M. Nania, F. Foglia, O.K. Matar, et al., Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation. Nanoscale 9, 2030–2037 (2017)CrossRef
6.
go back to reference J.A. Pojman, V.M. Ilyashenko, A.M. Khan, Free-radical frontal polymerization: Self-propagating thermal reaction waves. J. Chem. Soc. Faraday Trans. 92, 2825 (1996)CrossRef J.A. Pojman, V.M. Ilyashenko, A.M. Khan, Free-radical frontal polymerization: Self-propagating thermal reaction waves. J. Chem. Soc. Faraday Trans. 92, 2825 (1996)CrossRef
7.
go back to reference Y.A. Chekanov, J.A. Pojman, Preparation of functionally gradient materials via frontal polymerization. J. Appl. Polym. Sci. 78, 2398–2404 (2000)CrossRef Y.A. Chekanov, J.A. Pojman, Preparation of functionally gradient materials via frontal polymerization. J. Appl. Polym. Sci. 78, 2398–2404 (2000)CrossRef
8.
go back to reference C. Nason, J.A. Pojman, C. Hoyle, The effect of a trithiol and inorganic fillers on the photo-induced thermal frontal polymerization of a triacrylate. J. Polym. Sci. Part A Polym. Chem. 46, 8091–8096 (2008)CrossRef C. Nason, J.A. Pojman, C. Hoyle, The effect of a trithiol and inorganic fillers on the photo-induced thermal frontal polymerization of a triacrylate. J. Polym. Sci. Part A Polym. Chem. 46, 8091–8096 (2008)CrossRef
9.
go back to reference M. Nania, O.K. Matar, J.T. Cabral, Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling. Soft Matter 11, 3067–3075 (2015)CrossRef M. Nania, O.K. Matar, J.T. Cabral, Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling. Soft Matter 11, 3067–3075 (2015)CrossRef
10.
go back to reference D. Bomze, P. Knaack, R. Liska, Successful radical induced cationic frontal polymerization of epoxy-based monomers by C–C labile compounds. Polym. Chem. 6, 8161–8167 (2015)CrossRef D. Bomze, P. Knaack, R. Liska, Successful radical induced cationic frontal polymerization of epoxy-based monomers by C–C labile compounds. Polym. Chem. 6, 8161–8167 (2015)CrossRef
11.
go back to reference J.V. Crivello, U. Bulut, Dual photo- and thermally initiated cationic polymerization of epoxy monomers. J. Polym. Sci. Part A Polym. Chem. 44, 6750–6764 (2006)CrossRef J.V. Crivello, U. Bulut, Dual photo- and thermally initiated cationic polymerization of epoxy monomers. J. Polym. Sci. Part A Polym. Chem. 44, 6750–6764 (2006)CrossRef
12.
go back to reference J.V. Crivello, B. Falk, M.R. Zonca, Photoinduced cationic ring-opening frontal polymerizations of oxetanes and oxiranes. J. Polym. Sci. Part A Polym. Chem. 42, 1630–1646 (2004)CrossRef J.V. Crivello, B. Falk, M.R. Zonca, Photoinduced cationic ring-opening frontal polymerizations of oxetanes and oxiranes. J. Polym. Sci. Part A Polym. Chem. 42, 1630–1646 (2004)CrossRef
13.
go back to reference J.V. Crivello, Hybrid free radical/cationic frontal photopolymerizations. J. Polym. Sci. Part A Polym. Chem. 45, 4331–4340 (2007)CrossRef J.V. Crivello, Hybrid free radical/cationic frontal photopolymerizations. J. Polym. Sci. Part A Polym. Chem. 45, 4331–4340 (2007)CrossRef
14.
go back to reference J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRef J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRef
15.
go back to reference M. He, X. Huang, Z. Zeng, et al., Photo-triggered redox frontal polymerization: A new tool for synthesizing thermally sensitive materials. J. Polym. Sci. Part A Polym. Chem 51, 4515–4521 (2013) M. He, X. Huang, Z. Zeng, et al., Photo-triggered redox frontal polymerization: A new tool for synthesizing thermally sensitive materials. J. Polym. Sci. Part A Polym. Chem 51, 4515–4521 (2013)
16.
go back to reference C. Decker, The use of UV irradiation in polymerization. Polym. Int. 45, 133–141 (1998)CrossRef C. Decker, The use of UV irradiation in polymerization. Polym. Int. 45, 133–141 (1998)CrossRef
17.
go back to reference C. Decker, Light-induced crosslinking polymerization. Polym. Int. 51, 1141–1150 (2002)CrossRef C. Decker, Light-induced crosslinking polymerization. Polym. Int. 51, 1141–1150 (2002)CrossRef
18.
go back to reference J.T. Cabral, S.D. Hudson, C. Harrison, et al., Frontal photopolymerization for microfluidic applications. Langmuir 20, 10020–10029 (2004)CrossRef J.T. Cabral, S.D. Hudson, C. Harrison, et al., Frontal photopolymerization for microfluidic applications. Langmuir 20, 10020–10029 (2004)CrossRef
19.
go back to reference Y. Ohtsuka, Y. Koike, Studies on the light-focusing plastic rod 16: Mechanism of gradient-index formation in photocopolymerization of multiple monomer systems. Appl. Opt. 23, 1774 (1984)CrossRef Y. Ohtsuka, Y. Koike, Studies on the light-focusing plastic rod 16: Mechanism of gradient-index formation in photocopolymerization of multiple monomer systems. Appl. Opt. 23, 1774 (1984)CrossRef
20.
go back to reference Y. Koike, H. Hatanaka, Y. Ohtsuka, Studies on the light-focusing plastic rod 17: Plastic GRIN rod Lens prepared by photocopolymerization of a ternary monomer system. Appl. Opt. 23, 1779 (1984)CrossRef Y. Koike, H. Hatanaka, Y. Ohtsuka, Studies on the light-focusing plastic rod 17: Plastic GRIN rod Lens prepared by photocopolymerization of a ternary monomer system. Appl. Opt. 23, 1779 (1984)CrossRef
21.
go back to reference G. Terrones, A.J. Pearlstein, Effects of optical attenuation and consumption of a photobleaching initiator on local initiation rates in photopolymerizations. Macromolecules 34, 3195–3204 (2001)CrossRef G. Terrones, A.J. Pearlstein, Effects of optical attenuation and consumption of a photobleaching initiator on local initiation rates in photopolymerizations. Macromolecules 34, 3195–3204 (2001)CrossRef
22.
go back to reference Z.-F. Zhou, C. Yu, X.-Q. Wang, et al., Facile access to poly(NMA-Co-VCL) hydrogels via long range laser ignited frontal polymerization. J. Mater. Chem. A 1, 7326 (2013)CrossRef Z.-F. Zhou, C. Yu, X.-Q. Wang, et al., Facile access to poly(NMA-Co-VCL) hydrogels via long range laser ignited frontal polymerization. J. Mater. Chem. A 1, 7326 (2013)CrossRef
23.
go back to reference W.Q. Tang, L.H. Mao, Z.F. Zhou, et al., Facile synthesis of 4-vinylpyridine-based hydrogels via laser-ignited frontal polymerization and their performance on ion removal. Colloid Polym. Sci. 292, 2529–2537 (2014)CrossRef W.Q. Tang, L.H. Mao, Z.F. Zhou, et al., Facile synthesis of 4-vinylpyridine-based hydrogels via laser-ignited frontal polymerization and their performance on ion removal. Colloid Polym. Sci. 292, 2529–2537 (2014)CrossRef
24.
go back to reference J. Zhou, H. Shao, J. Tu, et al., Available plasma-ignited frontal polymerization approach toward facile fabrication of functional polymer hydrogels. Chem. Mater. 22, 5653–5659 (2010)CrossRef J. Zhou, H. Shao, J. Tu, et al., Available plasma-ignited frontal polymerization approach toward facile fabrication of functional polymer hydrogels. Chem. Mater. 22, 5653–5659 (2010)CrossRef
25.
go back to reference C. Yu, J. Zhou, C.F. Wang, et al., Rapid synthesis of poly(HPA-Co-VeoVa 10) amphiphilic gels toward removal of toxic solvents via plasma-ignited frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 49, 5217–5226 (2011)CrossRef C. Yu, J. Zhou, C.F. Wang, et al., Rapid synthesis of poly(HPA-Co-VeoVa 10) amphiphilic gels toward removal of toxic solvents via plasma-ignited frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 49, 5217–5226 (2011)CrossRef
26.
go back to reference H. Shao, C.F. Wang, S. Chen, et al., Fast fabrication of superabsorbent polyampholytic nanocomposite hydrogels via plasma-ignited frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 52, 912–920 (2014)CrossRef H. Shao, C.F. Wang, S. Chen, et al., Fast fabrication of superabsorbent polyampholytic nanocomposite hydrogels via plasma-ignited frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 52, 912–920 (2014)CrossRef
27.
go back to reference Y. Gan, J. Yin, X. Jiang, Self-wrinkling induced by the photopolymerization and self-assembly of fluorinated polymer at air/liquid interface. J. Mater. Chem. A 2, 18574–18582 (2014)CrossRef Y. Gan, J. Yin, X. Jiang, Self-wrinkling induced by the photopolymerization and self-assembly of fluorinated polymer at air/liquid interface. J. Mater. Chem. A 2, 18574–18582 (2014)CrossRef
28.
go back to reference D. Chandra, A.J. Crosby, Self-wrinkling of UV-cured polymer films. Adv. Mater. 23, 3441–3445 (2011)CrossRef D. Chandra, A.J. Crosby, Self-wrinkling of UV-cured polymer films. Adv. Mater. 23, 3441–3445 (2011)CrossRef
29.
go back to reference T. Takeshima, W.Y. Liao, Y. Nagashima, et al., Photoresponsive surface wrinkle morphologies in liquid crystalline polymer films. Macromolecules 48, 6378–6384 (2015)CrossRef T. Takeshima, W.Y. Liao, Y. Nagashima, et al., Photoresponsive surface wrinkle morphologies in liquid crystalline polymer films. Macromolecules 48, 6378–6384 (2015)CrossRef
30.
go back to reference S.K. Park, Y.-J. Kwark, S. Nam, et al., A variation in wrinkle structures of UV-cured films with chemical structures of prepolymers. Mater. Lett. 199, 105–109 (2017)CrossRef S.K. Park, Y.-J. Kwark, S. Nam, et al., A variation in wrinkle structures of UV-cured films with chemical structures of prepolymers. Mater. Lett. 199, 105–109 (2017)CrossRef
31.
go back to reference A. del Campo, A. Nogales, T.A. Ezquerra, et al., Modification of poly(dimethylsiloxane) as a basis for surface wrinkle formation: Chemical and mechanical characterization. Polymer (Guildf). 98, 327–335 (2016)CrossRef A. del Campo, A. Nogales, T.A. Ezquerra, et al., Modification of poly(dimethylsiloxane) as a basis for surface wrinkle formation: Chemical and mechanical characterization. Polymer (Guildf). 98, 327–335 (2016)CrossRef
32.
go back to reference L. Qi, C. Ruck, G. Spychalski, et al., Writing wrinkles on poly(dimethylsiloxane) (PDMS) by surface oxidation with a CO2 laser engraver. ACS Appl. Mater. Interfaces 10, 4295–4304 (2018)CrossRef L. Qi, C. Ruck, G. Spychalski, et al., Writing wrinkles on poly(dimethylsiloxane) (PDMS) by surface oxidation with a CO2 laser engraver. ACS Appl. Mater. Interfaces 10, 4295–4304 (2018)CrossRef
33.
go back to reference J.M. Katzenstein, C.B. Kim, N.A. Prisco, et al., A photochemical approach to directing flow and stabilizing topography in polymer films. Macromolecules 47, 6804–6812 (2014)CrossRef J.M. Katzenstein, C.B. Kim, N.A. Prisco, et al., A photochemical approach to directing flow and stabilizing topography in polymer films. Macromolecules 47, 6804–6812 (2014)CrossRef
34.
go back to reference H. Hou, F. Li, Z. Su, et al., Light-reversible hierarchical patterns by dynamic photo-dimerization induced wrinkles. J. Mater. Chem. C 5, 8765–8773 (2017)CrossRef H. Hou, F. Li, Z. Su, et al., Light-reversible hierarchical patterns by dynamic photo-dimerization induced wrinkles. J. Mater. Chem. C 5, 8765–8773 (2017)CrossRef
35.
go back to reference S.J. Ma, N.J. Wagner, C.J. Kloxin, Rapid and controlled photo-induced thiol–ene wrinkle formation via flowcoating. Mater. Horizons, 5:514–520 (2018)CrossRef S.J. Ma, N.J. Wagner, C.J. Kloxin, Rapid and controlled photo-induced thiol–ene wrinkle formation via flowcoating. Mater. Horizons, 5:514–520 (2018)CrossRef
36.
go back to reference F.A. Bayley, J.L. Liao, P.N. Stavrinou, et al., Wavefront kinetics of plasma oxidation of polydimethylsiloxane: Limits for sub-μm wrinkling. Soft Matter 10, 1155–1166 (2014)CrossRef F.A. Bayley, J.L. Liao, P.N. Stavrinou, et al., Wavefront kinetics of plasma oxidation of polydimethylsiloxane: Limits for sub-μm wrinkling. Soft Matter 10, 1155–1166 (2014)CrossRef
37.
go back to reference Y. Yang, X. Han, W. Ding, et al., Controlled free edge effects in surface wrinkling via combination of external straining and selective O2 plasma exposure. Langmuir 29, 7170–7177 (2013)CrossRef Y. Yang, X. Han, W. Ding, et al., Controlled free edge effects in surface wrinkling via combination of external straining and selective O2 plasma exposure. Langmuir 29, 7170–7177 (2013)CrossRef
38.
go back to reference H.T. Evensen, H. Jiang, K.W. Gotrik, et al., Transformations in wrinkle patterns: Cooperation between nanoscale cross-linked surface layers and the submicrometer bulk in wafer-spun, plasma-treated polydimethylsiloxane. Nano Lett. 9, 2884–2890 (2009)CrossRef H.T. Evensen, H. Jiang, K.W. Gotrik, et al., Transformations in wrinkle patterns: Cooperation between nanoscale cross-linked surface layers and the submicrometer bulk in wafer-spun, plasma-treated polydimethylsiloxane. Nano Lett. 9, 2884–2890 (2009)CrossRef
39.
go back to reference S. Nagashima, T. Hasebe, D. Tsuya, et al., Controlled formation of wrinkled diamond-like carbon (DLC) film on grooved poly(dimethylsiloxane) substrate. Diam. Relat. Mater. 22, 48–51 (2012)CrossRef S. Nagashima, T. Hasebe, D. Tsuya, et al., Controlled formation of wrinkled diamond-like carbon (DLC) film on grooved poly(dimethylsiloxane) substrate. Diam. Relat. Mater. 22, 48–51 (2012)CrossRef
40.
go back to reference M.-W. Moon, A. Vaziri, Surface modification of polymers using a multi-step plasma treatment. Scr. Mater. 60, 44–47 (2009)CrossRef M.-W. Moon, A. Vaziri, Surface modification of polymers using a multi-step plasma treatment. Scr. Mater. 60, 44–47 (2009)CrossRef
41.
go back to reference Q. Li, X. Han, J. Hou, et al., Patterning poly(dimethylsiloxane) microspheres via combination of oxygen plasma exposure and solvent treatment. J. Phys. Chem. B 119, 13450–13461 (2015)CrossRef Q. Li, X. Han, J. Hou, et al., Patterning poly(dimethylsiloxane) microspheres via combination of oxygen plasma exposure and solvent treatment. J. Phys. Chem. B 119, 13450–13461 (2015)CrossRef
Metadata
Title
Wrinkles Obtained by Frontal Polymerization/Vitrification
Authors
C. M. González-Henríquez
M. A. Sarabia Vallejos
Juan Rodríguez-Hernández
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05123-5_3

Premium Partners