Skip to main content
Top

2019 | OriginalPaper | Chapter

11. Wrinkling Labyrinth Patterns on Elastomeric Janus Particles

Authors : Ana Catarina Trindade, Pedro Patrício, Paulo Ivo Teixeira, Maria Helena Godinho

Published in: Wrinkled Polymer Surfaces

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Static and dynamic periodic patterns (stripes, wrinkles, and dots) are ubiquitous in nature, ranging from small wrinkles in soft materials (such as pumpkins, melons, nuts, and dehydrated fruits or even on animal’s skin) to much larger wavelength buckles (such as in lava flows or in geological structures, as in the desert sand).
In our work, we developed a simple method to fabricate Janus particles (films, spheres, and fibers) from a single urethane/urea elastomeric material, with two different surfaces: one smooth and another wrinkled. Wrinkles were generated by selectively UV-irradiating one-half of the elastomeric particles and permanently imprinted by swelling and drying the particles in an appropriate solvent. More, the particle surface can develop diverse wrinkling wavelengths depending on the swelling conditions.
We are able to fabricate monodisperse Janus particles from a single elastomeric material with two different hemispheres: one “aged” (wrinkled) and another “young” (flat). The hierarchical tuneable surface features produced open new horizons for application of these particles as, for example, components in biosensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference F. Schlesener, Colloidal Particles in Critical Fluids (Cuvillier Verlag Gottinger, Gottingen, 2004) F. Schlesener, Colloidal Particles in Critical Fluids (Cuvillier Verlag Gottinger, Gottingen, 2004)
3.
go back to reference R.S. Krishnan, On the depolarisation of Tyndall scattering in colloids. Proceedings of the Indian Academy of Sciences – Section A 1(10), 717–722 (1935)CrossRef R.S. Krishnan, On the depolarisation of Tyndall scattering in colloids. Proceedings of the Indian Academy of Sciences – Section A 1(10), 717–722 (1935)CrossRef
4.
go back to reference G. Schmid, Clusters and Colloids: From Theory to Applications (VCH Verlagsgesellschaft mbH, Weinheim/New York, 2008) G. Schmid, Clusters and Colloids: From Theory to Applications (VCH Verlagsgesellschaft mbH, Weinheim/New York, 2008)
5.
go back to reference I. Cho, K.W. Lee, Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene. J. Appl. Polym. Sci. 30(5), 1903–1926 (1985)CrossRef I. Cho, K.W. Lee, Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene. J. Appl. Polym. Sci. 30(5), 1903–1926 (1985)CrossRef
6.
go back to reference C. Casagrande, P. Fabre, E. Raphael, M. Veyssie, Janus Beads – Realization and Behavior at Water Oil Interfaces. Europhys. Lett. 9, 251–255 (1989)CrossRef C. Casagrande, P. Fabre, E. Raphael, M. Veyssie, Janus Beads – Realization and Behavior at Water Oil Interfaces. Europhys. Lett. 9, 251–255 (1989)CrossRef
7.
go back to reference C. Casagrande, M.J. Veyssie, Beads – realization and 1st observation of interfacial properties. C. R. Acad. Sci. (Paris) 306, 1423–1425 (1988) C. Casagrande, M.J. Veyssie, Beads – realization and 1st observation of interfacial properties. C. R. Acad. Sci. (Paris) 306, 1423–1425 (1988)
9.
go back to reference A. Walther, A.H.E. Muller, Janus particles. Soft Matter 4, 663–668 (2008)CrossRef A. Walther, A.H.E. Muller, Janus particles. Soft Matter 4, 663–668 (2008)CrossRef
10.
go back to reference H.J. Hektor, K. Scholtmeijer, Hydrophobins: Proteins with potential. Curr. Opin. Biotechnol. 16(4), 434–439 (2005)CrossRef H.J. Hektor, K. Scholtmeijer, Hydrophobins: Proteins with potential. Curr. Opin. Biotechnol. 16(4), 434–439 (2005)CrossRef
11.
go back to reference L. Hong, S. Jiang, S. Granick, Simple method to produce Janus colloidal particles in large quantity. Langmuir 22(23), 9495–9499 (2006)CrossRef L. Hong, S. Jiang, S. Granick, Simple method to produce Janus colloidal particles in large quantity. Langmuir 22(23), 9495–9499 (2006)CrossRef
12.
go back to reference S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Granick, Janus particle synthesis and assembly. Adv. Mater. 22(10), 1060–1071 (2010)CrossRef S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Granick, Janus particle synthesis and assembly. Adv. Mater. 22(10), 1060–1071 (2010)CrossRef
13.
go back to reference F. Liang, B. Liu, Z. Cao, Z. Yang, Janus colloids toward interfacial engineering. Langmuir 34(14), 4123-4131 (2018)CrossRef F. Liang, B. Liu, Z. Cao, Z. Yang, Janus colloids toward interfacial engineering. Langmuir 34(14), 4123-4131 (2018)CrossRef
14.
go back to reference A.-H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46, 1222–1244 (2007)CrossRef A.-H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46, 1222–1244 (2007)CrossRef
15.
go back to reference J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 42(8), 1097–1107 (2009)CrossRef J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 42(8), 1097–1107 (2009)CrossRef
16.
go back to reference U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19(1), 33–60 (2006)CrossRef U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19(1), 33–60 (2006)CrossRef
17.
go back to reference N. Zhao, M. Gao, Magnetic Janus particles prepared by a flame synthetic approach: Synthesis, characterizations and properties. Adv. Mater. 21(2), 184–187 (2009)CrossRef N. Zhao, M. Gao, Magnetic Janus particles prepared by a flame synthetic approach: Synthesis, characterizations and properties. Adv. Mater. 21(2), 184–187 (2009)CrossRef
18.
go back to reference Y. Li, W.-B. Zhang, I.F. Hsieh, G. Zhang, Y. Cao, X. Li, C. Wesdemiotis, B. Lotz, H. Xiong, S.Z.D. Cheng, Breaking symmetry toward nonspherical Janus particles based on polyhedral oligomeric silsesquioxanes: Molecular design, “Click” synthesis, and hierarchical structure. J. Am. Chem. Soc. 133(28), 10712–10715 (2011)CrossRef Y. Li, W.-B. Zhang, I.F. Hsieh, G. Zhang, Y. Cao, X. Li, C. Wesdemiotis, B. Lotz, H. Xiong, S.Z.D. Cheng, Breaking symmetry toward nonspherical Janus particles based on polyhedral oligomeric silsesquioxanes: Molecular design, “Click” synthesis, and hierarchical structure. J. Am. Chem. Soc. 133(28), 10712–10715 (2011)CrossRef
19.
go back to reference X. Feng, R. Zhang, Y. Li, Y.-l. Hong, D. Guo, K. Lang, K.-Y. Wu, M. Huang, J. Mao, C. Wesdemiotis, Y. Nishiyama, W.-B. Zhang, T. Miyoshi, T. Li, S.Z.D. Cheng, Hierarchical self-organization of ABn Dendron-like molecules into a supramolecular lattice sequence. ACS Cent. Sci. 3(8), 860–867 (2017)CrossRef X. Feng, R. Zhang, Y. Li, Y.-l. Hong, D. Guo, K. Lang, K.-Y. Wu, M. Huang, J. Mao, C. Wesdemiotis, Y. Nishiyama, W.-B. Zhang, T. Miyoshi, T. Li, S.Z.D. Cheng, Hierarchical self-organization of ABn Dendron-like molecules into a supramolecular lattice sequence. ACS Cent. Sci. 3(8), 860–867 (2017)CrossRef
20.
go back to reference H. Wu, Y.-Q. Zhang, M.-B. Hu, L.-J. Ren, Y. Lin, W. Wang, Creating quasi two-dimensional cluster-assembled materials through self-assembly of a Janus Polyoxometalate-Silsesquioxane co-cluster. Langmuir 33(21), 5283–5290 (2017)CrossRef H. Wu, Y.-Q. Zhang, M.-B. Hu, L.-J. Ren, Y. Lin, W. Wang, Creating quasi two-dimensional cluster-assembled materials through self-assembly of a Janus Polyoxometalate-Silsesquioxane co-cluster. Langmuir 33(21), 5283–5290 (2017)CrossRef
21.
go back to reference C. Ohm, N. Kapernaum, D. Nonnenmacher, F. Giesselmann, C. Serra, R. Zentel, Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. J. Am. Chem. Soc. 133(14), 5305–5311 (2011)CrossRef C. Ohm, N. Kapernaum, D. Nonnenmacher, F. Giesselmann, C. Serra, R. Zentel, Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. J. Am. Chem. Soc. 133(14), 5305–5311 (2011)CrossRef
22.
go back to reference T. Hessberger, L.B. Braun, F. Henrich, C. Muller, F. Giesselmann, C. Serra, R. Zentel, Co-flow microfluidic synthesis of liquid crystalline actuating Janus particles. J. Mater. Chem. C 4, 8778–8786 (2016)CrossRef T. Hessberger, L.B. Braun, F. Henrich, C. Muller, F. Giesselmann, C. Serra, R. Zentel, Co-flow microfluidic synthesis of liquid crystalline actuating Janus particles. J. Mater. Chem. C 4, 8778–8786 (2016)CrossRef
23.
go back to reference V.B. Varma, R.G. Wu, Z.P. Wang, R.V. Ramanujan, Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Lab Chip 17(20), 3514–3525 (2017)CrossRef V.B. Varma, R.G. Wu, Z.P. Wang, R.V. Ramanujan, Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Lab Chip 17(20), 3514–3525 (2017)CrossRef
24.
go back to reference P.-F. Jin, Y. Shao, G.-Z. Yin, S. Yang, J. He, P. Ni, W.-B. Zhang, Janus Polystyrene–Polydimethylsiloxane star polymers with a cubic core. Macromolecules 51(2), 419–427 (2018)CrossRef P.-F. Jin, Y. Shao, G.-Z. Yin, S. Yang, J. He, P. Ni, W.-B. Zhang, Janus Polystyrene–Polydimethylsiloxane star polymers with a cubic core. Macromolecules 51(2), 419–427 (2018)CrossRef
25.
go back to reference F. Wurm, A.F.M. Kilbinger, Polymeric Janus particles. Angew. Chem. Int. Ed. 48(45), 8412–8421 (2009)CrossRef F. Wurm, A.F.M. Kilbinger, Polymeric Janus particles. Angew. Chem. Int. Ed. 48(45), 8412–8421 (2009)CrossRef
26.
go back to reference S. Lone, I.W. Cheong, Fabrication of polymeric Janus particles by droplet microfluidics. RSC Adv. 4(26), 13322–13333 (2014)CrossRef S. Lone, I.W. Cheong, Fabrication of polymeric Janus particles by droplet microfluidics. RSC Adv. 4(26), 13322–13333 (2014)CrossRef
27.
go back to reference H. Yabu, M. Kanahara, M. Shimomura, T. Arita, K. Harano, E. Nakamura, T. Higuchi, H. Jinnai, Polymer Janus particles containing block-copolymer stabilized magnetic nanoparticles. ACS Appl. Mater. Interfaces 5(8), 3262–3266 (2013)CrossRef H. Yabu, M. Kanahara, M. Shimomura, T. Arita, K. Harano, E. Nakamura, T. Higuchi, H. Jinnai, Polymer Janus particles containing block-copolymer stabilized magnetic nanoparticles. ACS Appl. Mater. Interfaces 5(8), 3262–3266 (2013)CrossRef
28.
go back to reference Y. Yi, L. Sanchez, Y. Gao, Y. Yu, Janus particles for biological imaging and sensing. Analyst 141(12), 3526–3539 (2016)CrossRef Y. Yi, L. Sanchez, Y. Gao, Y. Yu, Janus particles for biological imaging and sensing. Analyst 141(12), 3526–3539 (2016)CrossRef
29.
go back to reference G. Luo, L. Du, Y. Wang, Y. Lu, J. Xu, Controllable preparation of particles with microfluidics. Particuology 9(6), 545–558 (2011)CrossRef G. Luo, L. Du, Y. Wang, Y. Lu, J. Xu, Controllable preparation of particles with microfluidics. Particuology 9(6), 545–558 (2011)CrossRef
30.
go back to reference X.-T. Sun, M. Liu, Z.-R. Xu, Microfluidic fabrication of multifunctional particles and their analytical applications. Talanta 121, 163–177 (2014)CrossRef X.-T. Sun, M. Liu, Z.-R. Xu, Microfluidic fabrication of multifunctional particles and their analytical applications. Talanta 121, 163–177 (2014)CrossRef
31.
go back to reference T. Nisisako, Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface Sci. 25, 1–12 (2016)CrossRef T. Nisisako, Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface Sci. 25, 1–12 (2016)CrossRef
32.
go back to reference Z. Nie, W. Li, M. Seo, S. Xu, E. Kumacheva, Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly. J. Am. Chem. Soc. 128(29), 9408–9412 (2006)CrossRef Z. Nie, W. Li, M. Seo, S. Xu, E. Kumacheva, Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly. J. Am. Chem. Soc. 128(29), 9408–9412 (2006)CrossRef
33.
go back to reference K.-H. Roh, D.C. Martin, J. Lahann, Biphasic Janus particles with nanoscale anisotropy. Nat. Mater. 4, 759–763 (2005)CrossRef K.-H. Roh, D.C. Martin, J. Lahann, Biphasic Janus particles with nanoscale anisotropy. Nat. Mater. 4, 759–763 (2005)CrossRef
34.
go back to reference S. Rahmani, C.H. Villa, A.F. Dishman, M.E. Grabowski, D.C. Pan, H. Durmaz, A.C. Misra, L. Colón-Meléndez, M.J. Solomon, V.R. Muzykantov, J. Lahann, Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications. J. Drug Target. 23(7–8), 750–758 (2015)CrossRef S. Rahmani, C.H. Villa, A.F. Dishman, M.E. Grabowski, D.C. Pan, H. Durmaz, A.C. Misra, L. Colón-Meléndez, M.J. Solomon, V.R. Muzykantov, J. Lahann, Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications. J. Drug Target. 23(7–8), 750–758 (2015)CrossRef
35.
go back to reference Z. Cao, Q. Bian, Y. Chen, F. Liang, G. Wang, Light-responsive janus-particle-based coatings for cell capture and release. ACS Macro Lett. 6(10), 1124–1128 (2017)CrossRef Z. Cao, Q. Bian, Y. Chen, F. Liang, G. Wang, Light-responsive janus-particle-based coatings for cell capture and release. ACS Macro Lett. 6(10), 1124–1128 (2017)CrossRef
36.
go back to reference A. Walther, A.H.E. Müller, Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113(7), 5194–5261 (2013)CrossRef A. Walther, A.H.E. Müller, Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113(7), 5194–5261 (2013)CrossRef
37.
go back to reference S. Sacanna, M. Korpics, K. Rodriguez, L. Colón-Meléndez, S.-H. Kim, D.J. Pine, G.-R. Yi, Shaping colloids for self-assembly. Nat. Commun. 4(1688), 1–6 (2013) S. Sacanna, M. Korpics, K. Rodriguez, L. Colón-Meléndez, S.-H. Kim, D.J. Pine, G.-R. Yi, Shaping colloids for self-assembly. Nat. Commun. 4(1688), 1–6 (2013)
38.
go back to reference J. Zhang, B.A. Grzybowski, S. Granick, Janus particle synthesis, assembly, and application. Langmuir 33, 6964–6977 (2017)CrossRef J. Zhang, B.A. Grzybowski, S. Granick, Janus particle synthesis, assembly, and application. Langmuir 33, 6964–6977 (2017)CrossRef
39.
go back to reference A. Walther, M. Hoffmann, H.E. Müller Axel, Emulsion polymerization using Janus particles as stabilizers. Angew. Chem. 120(4), 723–726 (2007)CrossRef A. Walther, M. Hoffmann, H.E. Müller Axel, Emulsion polymerization using Janus particles as stabilizers. Angew. Chem. 120(4), 723–726 (2007)CrossRef
40.
go back to reference X. Pei, Y. Tan, K. Xu, C. Liu, C. Lu, P. Wang, Pickering polymerization of styrene stabilized by starch-based nanospheres. Polym. Chem. 7(19), 3325–3333 (2016)CrossRef X. Pei, Y. Tan, K. Xu, C. Liu, C. Lu, P. Wang, Pickering polymerization of styrene stabilized by starch-based nanospheres. Polym. Chem. 7(19), 3325–3333 (2016)CrossRef
41.
go back to reference J. Tang, P.J. Quinlan, K.C. Tam, Stimuli-responsive Pickering emulsions: Recent advances and potential applications. Soft Matter 11(18), 3512–3529 (2015)CrossRef J. Tang, P.J. Quinlan, K.C. Tam, Stimuli-responsive Pickering emulsions: Recent advances and potential applications. Soft Matter 11(18), 3512–3529 (2015)CrossRef
42.
go back to reference Y. Gao, Y. Yu, How half-coated Janus particles enter cells. J. Am. Chem. Soc. 135(51), 19091–19094 (2013)CrossRef Y. Gao, Y. Yu, How half-coated Janus particles enter cells. J. Am. Chem. Soc. 135(51), 19091–19094 (2013)CrossRef
43.
go back to reference F. Khan, M. Tanaka, Designing smart biomaterials for tissue engineering. Int. J. Mol. Sci. 19, 17 (2018)CrossRef F. Khan, M. Tanaka, Designing smart biomaterials for tissue engineering. Int. J. Mol. Sci. 19, 17 (2018)CrossRef
44.
go back to reference J.A. Champion, Y.K. Katare, S. Mitragotri, Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121(1), 3–9 (2007)CrossRef J.A. Champion, Y.K. Katare, S. Mitragotri, Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121(1), 3–9 (2007)CrossRef
45.
go back to reference Y. Zhang, H.F. Chan, K.W. Leong, Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 65(1), 104–120 (2013)CrossRef Y. Zhang, H.F. Chan, K.W. Leong, Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 65(1), 104–120 (2013)CrossRef
46.
go back to reference H. Xie, Z.-G. She, S. Wang, G. Sharma, J.W. Smith, One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28(9), 4459–4463 (2012)CrossRef H. Xie, Z.-G. She, S. Wang, G. Sharma, J.W. Smith, One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28(9), 4459–4463 (2012)CrossRef
47.
go back to reference S. Hwang, J. Lahann, Differentially degradable Janus particles for controlled release applications. Macromol. Rapid Commun. 33(14), 1178–1183 (2012)CrossRef S. Hwang, J. Lahann, Differentially degradable Janus particles for controlled release applications. Macromol. Rapid Commun. 33(14), 1178–1183 (2012)CrossRef
48.
go back to reference P. Johal, S. Chaudhary, Electronic paper technology. Int. J. Adv. Res. Sci. Eng. 2(9), 106-110 (2013) P. Johal, S. Chaudhary, Electronic paper technology. Int. J. Adv. Res. Sci. Eng. 2(9), 106-110 (2013)
49.
go back to reference Y. Komazakia, H. Hirama, T. Torii, Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper. J. Appl. Phys. 117, 154506 (2015)CrossRef Y. Komazakia, H. Hirama, T. Torii, Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper. J. Appl. Phys. 117, 154506 (2015)CrossRef
50.
go back to reference Y. Komazaki, T. Torii, Memory effect canceling and novel driving scheme of twisting-ball display via space-charge polarization. J. Soc. Inf. Disp. 25(5), 295–301 (2017)CrossRef Y. Komazaki, T. Torii, Memory effect canceling and novel driving scheme of twisting-ball display via space-charge polarization. J. Soc. Inf. Disp. 25(5), 295–301 (2017)CrossRef
51.
go back to reference X. Ma, A. Jannasch, U.-R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, S. Sánchez, Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15(10), 7043–7050 (2015)CrossRef X. Ma, A. Jannasch, U.-R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, S. Sánchez, Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15(10), 7043–7050 (2015)CrossRef
52.
go back to reference P.S. Schattling, M.A. Ramos-Docampo, V. Salgueiriño, B. Städler, Double-fueled Janus swimmers with magnetotactic behavior. ACS Nano 11(4), 3973–3983 (2017)CrossRef P.S. Schattling, M.A. Ramos-Docampo, V. Salgueiriño, B. Städler, Double-fueled Janus swimmers with magnetotactic behavior. ACS Nano 11(4), 3973–3983 (2017)CrossRef
53.
go back to reference M. Guix, S.M. Weiz, O.G. Schmidt, M. Medina-Sánchez, Self-propelled micro/nanoparticle motors. Part. Part. Syst. Charact. 35(2), 1700382 (2018)CrossRef M. Guix, S.M. Weiz, O.G. Schmidt, M. Medina-Sánchez, Self-propelled micro/nanoparticle motors. Part. Part. Syst. Charact. 35(2), 1700382 (2018)CrossRef
54.
go back to reference J. Zhang, J. Yan, S. Granick, Directed self-assembly pathways of active colloidal clusters. Angew. Chem. Int. Ed. 55(17), 5166–5169 (2016)CrossRef J. Zhang, J. Yan, S. Granick, Directed self-assembly pathways of active colloidal clusters. Angew. Chem. Int. Ed. 55(17), 5166–5169 (2016)CrossRef
55.
go back to reference J. Yan, M. Han, J. Zhang, C. Xu, E. Luijten, S. Granick, Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016)CrossRef J. Yan, M. Han, J. Zhang, C. Xu, E. Luijten, S. Granick, Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016)CrossRef
56.
go back to reference K.-H. Roh, M. Yoshida, J. Lahann, Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 23(10), 5683–5688 (2007)CrossRef K.-H. Roh, M. Yoshida, J. Lahann, Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 23(10), 5683–5688 (2007)CrossRef
57.
go back to reference J. Jiang, H. Gu, H. Shao, E. Devlin, G.C. Papaefthymiou, J.Y. Ying, Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater. 20, 4403–4407 (2008)CrossRef J. Jiang, H. Gu, H. Shao, E. Devlin, G.C. Papaefthymiou, J.Y. Ying, Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater. 20, 4403–4407 (2008)CrossRef
58.
go back to reference S.H. Hu, X. Gao, Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc. 132, 7234–7237 (2010)CrossRef S.H. Hu, X. Gao, Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc. 132, 7234–7237 (2010)CrossRef
59.
go back to reference L.Y. Wu, B.M. Ross, S. Hong, L.P. Lee, Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 6, 503–507 (2010)CrossRef L.Y. Wu, B.M. Ross, S. Hong, L.P. Lee, Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 6, 503–507 (2010)CrossRef
60.
go back to reference A. Kirillova, C. Schliebe, G. Stoychev, A. Jakob, H. Lang, A. Synytska, Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl. Mater. Interfaces 7(38), 21218–21225 (2015)CrossRef A. Kirillova, C. Schliebe, G. Stoychev, A. Jakob, H. Lang, A. Synytska, Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl. Mater. Interfaces 7(38), 21218–21225 (2015)CrossRef
61.
go back to reference J. Faria, M.P. Ruiz, D.E. Resasco, Phase-selective catalysis in emulsions stabilized by Janus silica-nanoparticles. Adv. Synth. Catal. 352(14–15), 2359–2364 (2010)CrossRef J. Faria, M.P. Ruiz, D.E. Resasco, Phase-selective catalysis in emulsions stabilized by Janus silica-nanoparticles. Adv. Synth. Catal. 352(14–15), 2359–2364 (2010)CrossRef
62.
go back to reference L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O.G. Schmidt, Catalytic Janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery. ACS Nano 6(4), 3383–3389 (2012)CrossRef L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O.G. Schmidt, Catalytic Janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery. ACS Nano 6(4), 3383–3389 (2012)CrossRef
63.
go back to reference S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Steve Granick, Janus particle synthesis and assembly. Adv. Mater. 22, 1060–1071 (2010)CrossRef S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Steve Granick, Janus particle synthesis and assembly. Adv. Mater. 22, 1060–1071 (2010)CrossRef
64.
go back to reference J.-W. Kim, R.J. Larsen, D.A. Weitz, Synthesis of nonspherical colloidal particles with anisotropic properties. J. Am. Chem. Soc. 128(44), 14374–14377 (2006)CrossRef J.-W. Kim, R.J. Larsen, D.A. Weitz, Synthesis of nonspherical colloidal particles with anisotropic properties. J. Am. Chem. Soc. 128(44), 14374–14377 (2006)CrossRef
65.
go back to reference J. Genzer, J. Groenewold, Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2(4), 310–323 (2006)CrossRef J. Genzer, J. Groenewold, Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2(4), 310–323 (2006)CrossRef
66.
go back to reference Y. Xuan, X. Guo, Y. Cui, Crack-free controlled wrinkling of a bilayer film with a gradient interface. Soft Matter 8(37), 9603–9609 (2012)CrossRef Y. Xuan, X. Guo, Y. Cui, Crack-free controlled wrinkling of a bilayer film with a gradient interface. Soft Matter 8(37), 9603–9609 (2012)CrossRef
67.
go back to reference T. Okayasu, H.L. Zhang, D.G. Bucknall, Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv. Funct. Mater. 14(11), 1081–1088 (2004)CrossRef T. Okayasu, H.L. Zhang, D.G. Bucknall, Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv. Funct. Mater. 14(11), 1081–1088 (2004)CrossRef
68.
go back to reference A.F. Miller, Materials science: Exploiting wrinkle formation. Science 317(5838), 605–606 (2007)CrossRef A.F. Miller, Materials science: Exploiting wrinkle formation. Science 317(5838), 605–606 (2007)CrossRef
69.
go back to reference M.H. Godinho, A.C. Trindade, J.L. Figueirinhas, L.V. Melo, P. Brogueira, A.M. Deus, P.I.C. Teixeira, Tuneable micro-and nano-periodic structures in a free-standing flexible urethane/urea elastomer film. Eur. Phys. J. E Soft Matter 21, 319–330 (2006)CrossRef M.H. Godinho, A.C. Trindade, J.L. Figueirinhas, L.V. Melo, P. Brogueira, A.M. Deus, P.I.C. Teixeira, Tuneable micro-and nano-periodic structures in a free-standing flexible urethane/urea elastomer film. Eur. Phys. J. E Soft Matter 21, 319–330 (2006)CrossRef
70.
go back to reference C. Zhao, M.N. de Pinho, Design of polypropylene oxide/polybutadiene bi-soft segment urethane/urea polymer for pervaporation membranes. Polymer 40(22), 6089–6097 (1999)CrossRef C. Zhao, M.N. de Pinho, Design of polypropylene oxide/polybutadiene bi-soft segment urethane/urea polymer for pervaporation membranes. Polymer 40(22), 6089–6097 (1999)CrossRef
71.
go back to reference A.C. Trindade, M.H. Godinho, J.L. Figueirinhas, Shear induced finite orientational order in urethane/urea elastomers. Polymer 45(16), 5551–5555 (2004)CrossRef A.C. Trindade, M.H. Godinho, J.L. Figueirinhas, Shear induced finite orientational order in urethane/urea elastomers. Polymer 45(16), 5551–5555 (2004)CrossRef
72.
go back to reference N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)CrossRef N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)CrossRef
73.
go back to reference A.C. Trindade, A.P.C. Almeida, J.P. Canejo, P. Patrício, P. Pieranski, M.H. Godinho, Elastomeric patterns probed by a nematic liquid crystal. Mol. Cryst. Liq. Cryst. 657(11), 136-146 (2017)CrossRef A.C. Trindade, A.P.C. Almeida, J.P. Canejo, P. Patrício, P. Pieranski, M.H. Godinho, Elastomeric patterns probed by a nematic liquid crystal. Mol. Cryst. Liq. Cryst. 657(11), 136-146 (2017)CrossRef
74.
go back to reference J. Yin, C. Lu, Hierarchical surface wrinkles directed by wrinkled templates. Soft Matter 8(24), 6528–6534 (2012)CrossRef J. Yin, C. Lu, Hierarchical surface wrinkles directed by wrinkled templates. Soft Matter 8(24), 6528–6534 (2012)CrossRef
75.
go back to reference L. Liu, M. Ren, W. Yang, Preparation of polymeric Janus particles by directional UV-directed reactions. Langmuir 25, 11048–11053 (2009)CrossRef L. Liu, M. Ren, W. Yang, Preparation of polymeric Janus particles by directional UV-directed reactions. Langmuir 25, 11048–11053 (2009)CrossRef
76.
go back to reference X. Cai, Y. Wang, X. Wang, J. Ji, J. Hong, H. Pan, J. Chen, M. Xue, Fabrication of ultrafine soft-matter arrays by selective contact thermochemical reaction. Sci. Rep. 3, 1780 (2013)CrossRef X. Cai, Y. Wang, X. Wang, J. Ji, J. Hong, H. Pan, J. Chen, M. Xue, Fabrication of ultrafine soft-matter arrays by selective contact thermochemical reaction. Sci. Rep. 3, 1780 (2013)CrossRef
77.
go back to reference J. Yin, Z. Cao, I. Sheinman, X. Chen, Stress-driven buckling patterns in spheroidal core/shell structures. Proc. Natl. Acad. Sci. 105(49), 19132–19135 (2008)CrossRef J. Yin, Z. Cao, I. Sheinman, X. Chen, Stress-driven buckling patterns in spheroidal core/shell structures. Proc. Natl. Acad. Sci. 105(49), 19132–19135 (2008)CrossRef
78.
go back to reference M. Li, N. Hakimi, R. Perez, S. Waldman, A. Kozinski Janusz, K. Hwang Dae, Microarchitecture for a three-dimensional wrinkled surface platform. Adv. Mater. 27(11), 1880–1886 (2015)CrossRef M. Li, N. Hakimi, R. Perez, S. Waldman, A. Kozinski Janusz, K. Hwang Dae, Microarchitecture for a three-dimensional wrinkled surface platform. Adv. Mater. 27(11), 1880–1886 (2015)CrossRef
79.
go back to reference D. Terwagne, M. Brojan, M. Reis Pedro, Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 26(38), 6608–6611 (2014)CrossRef D. Terwagne, M. Brojan, M. Reis Pedro, Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 26(38), 6608–6611 (2014)CrossRef
80.
go back to reference B. Liu, W. Wei, X. Qu, Z. Yang, Janus colloids formed by biphasic grafting at a pickering emulsion interface. Angew. Chem. 120(21), 4037–4039 (2008)CrossRef B. Liu, W. Wei, X. Qu, Z. Yang, Janus colloids formed by biphasic grafting at a pickering emulsion interface. Angew. Chem. 120(21), 4037–4039 (2008)CrossRef
81.
go back to reference Y. Yang, X. Han, W. Ding, S. Jiang, Y. Cao, C. Lu, Controlled free edge effects in surface wrinkling via combination of external straining and selective O2 plasma exposure. Langmuir 29(23), 7170–7177 (2013)CrossRef Y. Yang, X. Han, W. Ding, S. Jiang, Y. Cao, C. Lu, Controlled free edge effects in surface wrinkling via combination of external straining and selective O2 plasma exposure. Langmuir 29(23), 7170–7177 (2013)CrossRef
82.
go back to reference M. Watanabe, K. Mizukami, Well-ordered wrinkling patterns on chemically oxidized poly(dimethylsiloxane) surfaces. Macromolecules 45(17), 7128–7134 (2012)CrossRef M. Watanabe, K. Mizukami, Well-ordered wrinkling patterns on chemically oxidized poly(dimethylsiloxane) surfaces. Macromolecules 45(17), 7128–7134 (2012)CrossRef
83.
go back to reference J. Ji, M. Fuji, H. Watanabe, T. Shirai, Partially functionalized Janus ZnO spheres prepared by protecting mask techniques. Colloids Surf. A Physicochem. Eng. Asp. 393, 6–10 (2012)CrossRef J. Ji, M. Fuji, H. Watanabe, T. Shirai, Partially functionalized Janus ZnO spheres prepared by protecting mask techniques. Colloids Surf. A Physicochem. Eng. Asp. 393, 6–10 (2012)CrossRef
84.
go back to reference S.-W. Choi, I.W. Cheong, J.-H. Kim, Y. Xia, Preparation of uniform microspheres using a simple fluidic device and their crystallization into close-packed lattices. Small 5, 454–459 (2009)CrossRef S.-W. Choi, I.W. Cheong, J.-H. Kim, Y. Xia, Preparation of uniform microspheres using a simple fluidic device and their crystallization into close-packed lattices. Small 5, 454–459 (2009)CrossRef
85.
go back to reference A.C. Trindade, J.P. Canejo, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Hierarchical wrinkling on elastomeric Janus spheres. J. Mater. Chem. 22, 22044 (2012)CrossRef A.C. Trindade, J.P. Canejo, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Hierarchical wrinkling on elastomeric Janus spheres. J. Mater. Chem. 22, 22044 (2012)CrossRef
86.
go back to reference A.C. Trindade, J.P. Canejo, L.F.V. Pinto, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Wrinkling labyrinth patterns on elastomeric janus particles. Macromolecules 44(7), 2220–2228 (2011)CrossRef A.C. Trindade, J.P. Canejo, L.F.V. Pinto, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Wrinkling labyrinth patterns on elastomeric janus particles. Macromolecules 44(7), 2220–2228 (2011)CrossRef
87.
go back to reference G. Cao, X. Chen, C. Li, Z. Cao, lf- assembled gular and labyrinth buckling patterns of thin films on spherical subtes. Phys. Rev. Let. 100, 036102 (2008)CrossRef G. Cao, X. Chen, C. Li, Z. Cao, lf- assembled gular and labyrinth buckling patterns of thin films on spherical subtes. Phys. Rev. Let. 100, 036102 (2008)CrossRef
88.
go back to reference A.C. Trindade, J.P. Canejo, P.I.C. Teixeira, P. Patrício, M.H. Godinho, First curl, then wrinkle. Macromol. Rapid Commun. 34(20), 1618–1622 (2013)CrossRef A.C. Trindade, J.P. Canejo, P.I.C. Teixeira, P. Patrício, M.H. Godinho, First curl, then wrinkle. Macromol. Rapid Commun. 34(20), 1618–1622 (2013)CrossRef
89.
go back to reference P. Teixeira, A.C. Trindade, M.H. Godinho, J. Azeredo, R. Oliveira, J.G. Fonseca, Staphylococcus epidermidis adhesion on modified urea/urethane elastomers. J. Biomater. Sci. Polym. Ed. 17(1-2), 239-246 (2006)CrossRef P. Teixeira, A.C. Trindade, M.H. Godinho, J. Azeredo, R. Oliveira, J.G. Fonseca, Staphylococcus epidermidis adhesion on modified urea/urethane elastomers. J. Biomater. Sci. Polym. Ed. 17(1-2), 239-246 (2006)CrossRef
Metadata
Title
Wrinkling Labyrinth Patterns on Elastomeric Janus Particles
Authors
Ana Catarina Trindade
Pedro Patrício
Paulo Ivo Teixeira
Maria Helena Godinho
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05123-5_11

Premium Partners