Skip to main content
Top
Published in: Journal of Scientific Computing 3/2018

17-02-2018

WSGD-OSC Scheme for Two-Dimensional Distributed Order Fractional Reaction–Diffusion Equation

Authors: Xuehua Yang, Haixiang Zhang, Da Xu

Published in: Journal of Scientific Computing | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a new numerical approximation is discussed for the two-dimensional distributed-order time fractional reaction–diffusion equation. Combining with the idea of weighted and shifted Grünwald difference (WSGD) approximation (Tian et al. in Math Comput 84:1703–1727, 2015; Wang and Vong in J Comput Phys 277:1–15, 2014) in time, we establish orthogonal spline collocation (OSC) method in space. A detailed analysis shows that the proposed scheme is unconditionally stable and convergent with the convergence order \(\mathscr {O}(\tau ^2+\Delta \alpha ^2+h^{r+1})\), where \(\tau , \Delta \alpha , h\) and r are, respectively the time step size, step size in distributed-order variable, space step size, and polynomial degree of space. Interestingly, we prove that the proposed WSGD-OSC scheme converges with the second-order in time, where OSC schemes proposed previously (Fairweather et al. in J Sci Comput 65:1217–1239, 2015; Yang et al. in J Comput Phys 256:824–837, 2014) can at most achieve temporal accuracy of order which depends on the order of fractional derivatives in the equations and is usually less than two. Some numerical results are also given to confirm our theoretical prediction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Luchko, Y.: Boundary value problems for the generalized time fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, 409–422 (2009)MathSciNetMATH Luchko, Y.: Boundary value problems for the generalized time fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, 409–422 (2009)MathSciNetMATH
2.
go back to reference Luchko, Y.: Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 14, 110–124 (2011)MathSciNetMATH Luchko, Y.: Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 14, 110–124 (2011)MathSciNetMATH
3.
go back to reference Li, Z., Luchko, Y., Yamamoto, M.: Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17, 1114–1136 (2014)MathSciNetCrossRefMATH Li, Z., Luchko, Y., Yamamoto, M.: Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17, 1114–1136 (2014)MathSciNetCrossRefMATH
4.
go back to reference Jia, J., Peng, J., Li, K.: Well-posedness of abstract distributed-order fractional diffusion equations. Commun. Pure Appl. Anal. 13, 605–621 (2014)MathSciNetCrossRefMATH Jia, J., Peng, J., Li, K.: Well-posedness of abstract distributed-order fractional diffusion equations. Commun. Pure Appl. Anal. 13, 605–621 (2014)MathSciNetCrossRefMATH
5.
go back to reference Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)MathSciNetCrossRefMATH Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)MathSciNetCrossRefMATH
6.
go back to reference Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14(9–10), 1267–1290 (2008)MathSciNetCrossRefMATH Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14(9–10), 1267–1290 (2008)MathSciNetCrossRefMATH
7.
go back to reference Ye, H., Liu, F., Anh, V.: Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652–660 (2015)MathSciNetCrossRefMATH Ye, H., Liu, F., Anh, V.: Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652–660 (2015)MathSciNetCrossRefMATH
8.
go back to reference Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2015)MathSciNetCrossRefMATH Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2015)MathSciNetCrossRefMATH
9.
go back to reference Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)MathSciNetCrossRefMATH Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)MathSciNetCrossRefMATH
10.
go back to reference Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)MathSciNetCrossRef Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)MathSciNetCrossRef
11.
go back to reference Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1312 (2016)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1312 (2016)MathSciNetCrossRefMATH
12.
go back to reference Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference scheme for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)MathSciNetCrossRefMATH Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference scheme for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)MathSciNetCrossRefMATH
13.
go back to reference Du, R., Hao, Z.P., Sun, Z.Z.: Lubich second-order methods for distributed-order time-fractional differential equations with smooth solutions. EAJAM 6, 131–151 (2016)MathSciNetCrossRefMATH Du, R., Hao, Z.P., Sun, Z.Z.: Lubich second-order methods for distributed-order time-fractional differential equations with smooth solutions. EAJAM 6, 131–151 (2016)MathSciNetCrossRefMATH
14.
go back to reference Jin, B., Lazarov, R., Sheen, D., Zhou, Z.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19, 69–93 (2016)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Sheen, D., Zhou, Z.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19, 69–93 (2016)MathSciNetCrossRefMATH
15.
go back to reference Chen, H., Lü, S.J., Chen, W.P.: Finite difference/spectral approximations for the distributed order time fractional reaction–diffusion equation on an unbounded domain. J. Comput. Phys. 315, 84–97 (2016)MathSciNetCrossRefMATH Chen, H., Lü, S.J., Chen, W.P.: Finite difference/spectral approximations for the distributed order time fractional reaction–diffusion equation on an unbounded domain. J. Comput. Phys. 315, 84–97 (2016)MathSciNetCrossRefMATH
16.
go back to reference Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)MathSciNetCrossRefMATH Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)MathSciNetCrossRefMATH
17.
go back to reference Yan, Y., Fairweather, G.: Orthogonal spline collocation methods for some partial integro-differential equations. SIAM J. Numer. Anal. 29, 755–768 (1992)MathSciNetCrossRefMATH Yan, Y., Fairweather, G.: Orthogonal spline collocation methods for some partial integro-differential equations. SIAM J. Numer. Anal. 29, 755–768 (1992)MathSciNetCrossRefMATH
18.
go back to reference Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 128, 55–82 (2001)MathSciNetCrossRefMATH Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 128, 55–82 (2001)MathSciNetCrossRefMATH
19.
go back to reference Bialecki, B., Fairweather, G., López-Marcos, J.C.: The extrapolated Crank–Nicolson orthogonal spline collocation method for a quasilinear parabolic problem with nonlocal boundary conditions. J. Sci. Comput. 62, 265–283 (2015)MathSciNetCrossRefMATH Bialecki, B., Fairweather, G., López-Marcos, J.C.: The extrapolated Crank–Nicolson orthogonal spline collocation method for a quasilinear parabolic problem with nonlocal boundary conditions. J. Sci. Comput. 62, 265–283 (2015)MathSciNetCrossRefMATH
20.
go back to reference Fernandes, R.I., Fairweather, G.: An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems. J. Comput. Phys. 231, 6248–6267 (2012)MathSciNetCrossRefMATH Fernandes, R.I., Fairweather, G.: An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems. J. Comput. Phys. 231, 6248–6267 (2012)MathSciNetCrossRefMATH
21.
go back to reference Fernandes, R.I., Bialecki, B., Fairweather, G.: An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems on evolving domains. J. Comput. Phys. 299, 561–580 (2015)MathSciNetCrossRefMATH Fernandes, R.I., Bialecki, B., Fairweather, G.: An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems on evolving domains. J. Comput. Phys. 299, 561–580 (2015)MathSciNetCrossRefMATH
22.
go back to reference Fairweather, G., Yang, X.H., Xu, D., Zhang, H.Z.: An ADI Crank–Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. J. Sci. Comput. 65, 1217–1239 (2015)MathSciNetCrossRefMATH Fairweather, G., Yang, X.H., Xu, D., Zhang, H.Z.: An ADI Crank–Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. J. Sci. Comput. 65, 1217–1239 (2015)MathSciNetCrossRefMATH
23.
go back to reference Fairweather, G., Zhang, H.Z., Yang, X.H., Xu, D.: A backward Euler orthogonal spline collocation method for the time-fractional Fokker–Plank equation. Numer. Methods Partial Differ. Equ. 31, 1534–1550 (2015)CrossRefMATH Fairweather, G., Zhang, H.Z., Yang, X.H., Xu, D.: A backward Euler orthogonal spline collocation method for the time-fractional Fokker–Plank equation. Numer. Methods Partial Differ. Equ. 31, 1534–1550 (2015)CrossRefMATH
24.
go back to reference Yang, X.H., Zhang, H.X., Xu, D.: Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 256, 824–837 (2014)MathSciNetCrossRefMATH Yang, X.H., Zhang, H.X., Xu, D.: Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 256, 824–837 (2014)MathSciNetCrossRefMATH
25.
go back to reference Zhang, H.X., Yang, X.H., Han, X.L.: Discrete-time orthogonal spline collocation method with application to two-dimensional fractional Cable equation. Comput. Math. Appl. 68, 1710–1722 (2014)MathSciNetCrossRefMATH Zhang, H.X., Yang, X.H., Han, X.L.: Discrete-time orthogonal spline collocation method with application to two-dimensional fractional Cable equation. Comput. Math. Appl. 68, 1710–1722 (2014)MathSciNetCrossRefMATH
26.
go back to reference Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetCrossRefMATH Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetCrossRefMATH
27.
go back to reference Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MathSciNetCrossRefMATH Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MathSciNetCrossRefMATH
28.
go back to reference Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetCrossRefMATH Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetCrossRefMATH
29.
go back to reference Percell, P., Wheeler, M.F.: A \(C^1\) finite element collocation method for elliptic equations. SIAM J. Numer. Anal. 17, 605–622 (1980)MathSciNetCrossRefMATH Percell, P., Wheeler, M.F.: A \(C^1\) finite element collocation method for elliptic equations. SIAM J. Numer. Anal. 17, 605–622 (1980)MathSciNetCrossRefMATH
30.
go back to reference Fernandes, R.I., Fairweather, G.: Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer. Methods Partial Differ. Equ. 9, 191–211 (1993)MathSciNetCrossRefMATH Fernandes, R.I., Fairweather, G.: Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer. Methods Partial Differ. Equ. 9, 191–211 (1993)MathSciNetCrossRefMATH
31.
go back to reference Greenwell-Yanik, C.E., Fairweather, G.: Analyses of spline collocation methods for parabolic and hyperbolic problems in two space variables. SIAM J. Numer. Anal. 23, 282–296 (1986)MathSciNetCrossRefMATH Greenwell-Yanik, C.E., Fairweather, G.: Analyses of spline collocation methods for parabolic and hyperbolic problems in two space variables. SIAM J. Numer. Anal. 23, 282–296 (1986)MathSciNetCrossRefMATH
32.
go back to reference Lin, Y.P., Thomée, V., Wahlbin, L.B.: Ritz–Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28, 1047–1070 (1991)MathSciNetCrossRefMATH Lin, Y.P., Thomée, V., Wahlbin, L.B.: Ritz–Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28, 1047–1070 (1991)MathSciNetCrossRefMATH
33.
go back to reference Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRefMATH
34.
go back to reference McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293, 201–217 (2015)MathSciNetCrossRefMATH McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293, 201–217 (2015)MathSciNetCrossRefMATH
35.
go back to reference Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35, 561–582 (2015)MathSciNetCrossRefMATH
Metadata
Title
WSGD-OSC Scheme for Two-Dimensional Distributed Order Fractional Reaction–Diffusion Equation
Authors
Xuehua Yang
Haixiang Zhang
Da Xu
Publication date
17-02-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0672-3

Other articles of this Issue 3/2018

Journal of Scientific Computing 3/2018 Go to the issue

Premium Partner