Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 6/2015

01-06-2015

Y2O2S:Yb3+, Er3+ nanofibers: novel fabrication technique, structure and up-conversion luminescent characteristics

Authors: Xin Lu, Ming Yang, Liying Yang, Qianli Ma, Xiangting Dong, Jian Tian

Published in: Journal of Materials Science: Materials in Electronics | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Y2O3:Yb3+, Er3+ nanofibers were prepared by calcination of the electrospun polyvinyl pyrrolidone (PVP)/[Y(NO3)3 + Yb(NO3)3 + Er(NO3)3] composite nanofibers. For the first time, Y2O2S:Yb3+, Er3+ up-conversion luminescent nanofibers were successfully synthesized via inheritance of the morphology and sulfurization of the above electrospinning-derived Y2O3:Yb3+, Er3+ nanofibers using sulfur powders as sulfur source by a double-crucible method we newly proposed. XRD analysis indicates that Y2O2S:Yb3+, Er3+ nanofibers are pure hexagonal in structure with space group \( {\text{P}}\overline{ 3} m 1 \). Observation results of FESEM and TEM reveal that the diameters of Y2O2S:Yb3+, Er3+ nanofibers are 105 ± 13 nm, and Y2O2S:Yb3+, Er3+ nanofibers are composed of nanoparticles with the diameter ranging from 40 to 70 nm. Up-conversion emission spectrum analysis manifests that Y2O2S:Yb3+, Er3+ nanofibers exhibit strong green and red upconversion emission centering at 526, 548 and 668 nm, respectively. The green emissions and the red emission are respectively assigned to 2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4Il5/2 energy levels transitions of Er3+ ions. The formation mechanism of Y2O2S:Yb3+, Er3+ upconversion luminescence nanofibers is also proposed. More importantly, this new strategy and fabrication technique are of universal significance to prepare other rare earth oxysulfides with various morphologies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference T. Jǖstel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 37, 3084–3103 (1998)CrossRef T. Jǖstel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 37, 3084–3103 (1998)CrossRef
3.
4.
go back to reference F. Wang, B. Yang, J.C. Zhang, Y.N. Dai, W.H. Ma, J. Lumin. 130, 473–477 (2010)CrossRef F. Wang, B. Yang, J.C. Zhang, Y.N. Dai, W.H. Ma, J. Lumin. 130, 473–477 (2010)CrossRef
5.
go back to reference A.M. Pires, O.A. Serra, M.R. Davolos, J. Alloys Compd. 374, 181–184 (2004)CrossRef A.M. Pires, O.A. Serra, M.R. Davolos, J. Alloys Compd. 374, 181–184 (2004)CrossRef
6.
go back to reference P.F. Ai, W.Y. Li, L.Y. Xiao, Y.D. Li, H.J. Wang, Y.L. Liu, Ceram. Int. 36, 2169–2174 (2010)CrossRef P.F. Ai, W.Y. Li, L.Y. Xiao, Y.D. Li, H.J. Wang, Y.L. Liu, Ceram. Int. 36, 2169–2174 (2010)CrossRef
7.
go back to reference Y. Fu, W.H. Cao, Y. Peng, X.X. Luo, M.M. Xing, J. Mater. Sci. 45, 6556–6561 (2010)CrossRef Y. Fu, W.H. Cao, Y. Peng, X.X. Luo, M.M. Xing, J. Mater. Sci. 45, 6556–6561 (2010)CrossRef
8.
go back to reference Y. Jiang, Y. Wu, Y. Xie, Y.T. Qian, J. Am. Ceram. Soc. 83, 2628–2630 (2000)CrossRef Y. Jiang, Y. Wu, Y. Xie, Y.T. Qian, J. Am. Ceram. Soc. 83, 2628–2630 (2000)CrossRef
9.
go back to reference C.L. Lo, J.G. Duh, B.S. Chiou, C.C. Peng, L. Ozawa, Mater. Chem. Phys. 71, 179–189 (2001)CrossRef C.L. Lo, J.G. Duh, B.S. Chiou, C.C. Peng, L. Ozawa, Mater. Chem. Phys. 71, 179–189 (2001)CrossRef
10.
go back to reference T.M. Chou, S. Mylswamy, R.S. Liu, S.Z. Chuang, Solid State Commun. 136, 205–209 (2005)CrossRef T.M. Chou, S. Mylswamy, R.S. Liu, S.Z. Chuang, Solid State Commun. 136, 205–209 (2005)CrossRef
11.
12.
go back to reference Q.L. Dai, H.W. Song, M.Y. Wang, X. Bai, B. Dong, R.F. Qin, X.S. Qu, H. Zhang, J. Phys. Chem. C 112, 19399–19404 (2008)CrossRef Q.L. Dai, H.W. Song, M.Y. Wang, X. Bai, B. Dong, R.F. Qin, X.S. Qu, H. Zhang, J. Phys. Chem. C 112, 19399–19404 (2008)CrossRef
13.
go back to reference Y.Y. Li, D.C. Dai, S.H. Cai, J. Chin. Soc. Rare Earths 14, 16–20 (1996) Y.Y. Li, D.C. Dai, S.H. Cai, J. Chin. Soc. Rare Earths 14, 16–20 (1996)
14.
15.
go back to reference Y.H. Song, H.P. You, Y.J. Huang, M. Yang, Y.H. Zheng, L.H. Zhang, N. Guo, Inorg. Chem. 49, 11499–11504 (2010)CrossRef Y.H. Song, H.P. You, Y.J. Huang, M. Yang, Y.H. Zheng, L.H. Zhang, N. Guo, Inorg. Chem. 49, 11499–11504 (2010)CrossRef
16.
17.
go back to reference J. Thirumalai, R. Chandramohan, T.A. Vijayan, R.M. Somasundaram, Mater. Res. Bull. 46, 285–291 (2011)CrossRef J. Thirumalai, R. Chandramohan, T.A. Vijayan, R.M. Somasundaram, Mater. Res. Bull. 46, 285–291 (2011)CrossRef
18.
go back to reference J.F. Jonhson, J.E. Geusic, H.J. Guggenheim, T. Kushida, S. Singh, L.G. Van Uiter, Appl. Phys. Lett. 15, 48–50 (1969)CrossRef J.F. Jonhson, J.E. Geusic, H.J. Guggenheim, T. Kushida, S. Singh, L.G. Van Uiter, Appl. Phys. Lett. 15, 48–50 (1969)CrossRef
19.
20.
go back to reference D.Q. Chen, Y.S. Wang, K.L. Zheng, T.L. Guo, Y.L. Yu, P. Huang, Opt. Lett. 33, 1884–1886 (2008)CrossRef D.Q. Chen, Y.S. Wang, K.L. Zheng, T.L. Guo, Y.L. Yu, P. Huang, Opt. Lett. 33, 1884–1886 (2008)CrossRef
21.
go back to reference S. Sivakumar, F.C.J.M. Van Veggel, M. Raudsepp, J. Am. Chem. Soc. 127, 12464–12465 (2005)CrossRef S. Sivakumar, F.C.J.M. Van Veggel, M. Raudsepp, J. Am. Chem. Soc. 127, 12464–12465 (2005)CrossRef
22.
go back to reference R. Martín-Rodríguez, R. Valiente, C. Pesquera, F. González, C. Blanco, V. Potin, M.C. Marcode Lucas, J. Lumin. 129, 1109–1114 (2009)CrossRef R. Martín-Rodríguez, R. Valiente, C. Pesquera, F. González, C. Blanco, V. Potin, M.C. Marcode Lucas, J. Lumin. 129, 1109–1114 (2009)CrossRef
23.
go back to reference S.J. Sheng, Q.L. Ma, X.T. Dong, N. Lv, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci. Mater. Electron. 25, 1309–1316 (2014)CrossRef S.J. Sheng, Q.L. Ma, X.T. Dong, N. Lv, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci. Mater. Electron. 25, 1309–1316 (2014)CrossRef
25.
go back to reference K. Lun, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci. Mater. Electron. 25, 5395–5402 (2014)CrossRef K. Lun, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci. Mater. Electron. 25, 5395–5402 (2014)CrossRef
26.
go back to reference H.Y. Wang, Y. Yang, Y. Wang, Y.Y. Zhao, X. Li, C. Wang, J. Nanosci. Nanotechnol. 9, 1522–1525 (2009)CrossRef H.Y. Wang, Y. Yang, Y. Wang, Y.Y. Zhao, X. Li, C. Wang, J. Nanosci. Nanotechnol. 9, 1522–1525 (2009)CrossRef
27.
go back to reference D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci. Mater. Electron. 24, 3041–3048 (2013)CrossRef D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci. Mater. Electron. 24, 3041–3048 (2013)CrossRef
28.
go back to reference S. Wu, X.T. Dong, J.X. Wang, Q.L. Kong, W.S. Yu, G.X. Liu, J. Mater. Sci. Mater. Electron. 25, 1053–1062 (2014)CrossRef S. Wu, X.T. Dong, J.X. Wang, Q.L. Kong, W.S. Yu, G.X. Liu, J. Mater. Sci. Mater. Electron. 25, 1053–1062 (2014)CrossRef
29.
go back to reference M.Y. Zhang, C.L. Shao, J.B. Mu, X.M. Huang, Z.Y. Zhang, Z.C. Guo, P. Zhang, Y.C. Liu, J. Mater. Chem. 22, 577–584 (2012)CrossRef M.Y. Zhang, C.L. Shao, J.B. Mu, X.M. Huang, Z.Y. Zhang, Z.C. Guo, P. Zhang, Y.C. Liu, J. Mater. Chem. 22, 577–584 (2012)CrossRef
30.
go back to reference Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.H. Liu, Nanoscale 5, 606–618 (2013)CrossRef Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.H. Liu, Nanoscale 5, 606–618 (2013)CrossRef
31.
go back to reference X.T. Dong, L. Liu, J.X. Wang, G.X. Liu, Chem. J. Chin U. 31, 20–25 (2010) X.T. Dong, L. Liu, J.X. Wang, G.X. Liu, Chem. J. Chin U. 31, 20–25 (2010)
32.
go back to reference X. Bai, H.W. Song, G.H. Pan, X.G. Ren, B. Dong, Q.L. Dai, L.B. Fan, J. Nanosci. Nanotechnol. 9, 2677–2681 (2009)CrossRef X. Bai, H.W. Song, G.H. Pan, X.G. Ren, B. Dong, Q.L. Dai, L.B. Fan, J. Nanosci. Nanotechnol. 9, 2677–2681 (2009)CrossRef
33.
go back to reference Q.L. Ma, J.X. Ma, X.T. Wang, WSYu. Dong, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)CrossRef Q.L. Ma, J.X. Ma, X.T. Wang, WSYu. Dong, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)CrossRef
34.
go back to reference N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem 79, 690–697 (2014)CrossRef N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem 79, 690–697 (2014)CrossRef
35.
36.
go back to reference X. Xi, J.X. Wang, X.T. Dong, Q.L. Ma, W.S. Yu, G.X. Liu, Chem. Eng. J. 254, 259–267 (2014)CrossRef X. Xi, J.X. Wang, X.T. Dong, Q.L. Ma, W.S. Yu, G.X. Liu, Chem. Eng. J. 254, 259–267 (2014)CrossRef
37.
go back to reference G.S. Yi, B.Q. Sun, F.Z. Yang, D.P. Chen, Y.X. Zhou, J. Cheng, Chem. Mater. 14, 2910–2914 (2002)CrossRef G.S. Yi, B.Q. Sun, F.Z. Yang, D.P. Chen, Y.X. Zhou, J. Cheng, Chem. Mater. 14, 2910–2914 (2002)CrossRef
38.
go back to reference M. Pollnau, D.R. Gamelin, S.R. Luthi, H. Gudel, Phys. Rev. B 61, 3337–3346 (2000)CrossRef M. Pollnau, D.R. Gamelin, S.R. Luthi, H. Gudel, Phys. Rev. B 61, 3337–3346 (2000)CrossRef
39.
go back to reference Y.H. Song, Y.J. Huang, L.H. Zhang, Y.H. Zheng, N. Guo, H.P. You, RSC Adv. 2, 4777–4781 (2012)CrossRef Y.H. Song, Y.J. Huang, L.H. Zhang, Y.H. Zheng, N. Guo, H.P. You, RSC Adv. 2, 4777–4781 (2012)CrossRef
Metadata
Title
Y2O2S:Yb3+, Er3+ nanofibers: novel fabrication technique, structure and up-conversion luminescent characteristics
Authors
Xin Lu
Ming Yang
Liying Yang
Qianli Ma
Xiangting Dong
Jian Tian
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 6/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-2947-x

Other articles of this Issue 6/2015

Journal of Materials Science: Materials in Electronics 6/2015 Go to the issue