Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

8. Zersetzung natürlicher Gashydratvorkommen: potentielle Folgen für Hangstabilitäten und Klima

Author: Judith M. Schicks

Published in: Gashydrate – Eine Einführung in Grundlagenforschung und Anwendung

Publisher: Springer Berlin Heidelberg

share
SHARE

Zusammenfassung

In Kap. 8 wird die Zersetzung von Gashydraten beschrieben und auf Phänomene wie den Memory-Effekt und den Selbsterhaltungseffekt (self-preservation effect oder anomalous preservation) eingegangen. Es wird beschrieben, unter welchen Umständen sich porenfüllendes, gerüstbildendes oder zementierendes Hydrat im Sediment bildet, wann dieses Hydrat die mechanischen Eigenschaften des Wirtssediments beeinflusst und wann der Abbau von Gashydraten in hydratführenden Sedimenten zu Hangrutschungen führen kann. Ferner wird auf die möglichen Wechselwirkungen zwischen Gashydraten im und unterhalb des Permafrostes sowie in marinen Sedimenten und dem Klima eingegangen.
Literature
go back to reference Chen X, Espinoza DN (2018) Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate. Fuel 214:614–622 CrossRef Chen X, Espinoza DN (2018) Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate. Fuel 214:614–622 CrossRef
go back to reference Cheng C-X, Tian Y-J, Wang F, Wu X-H, Zheng J-L, Zhang J, Li L-W, Yang P-L (2019) Experimental study on the morphology and memory effect of methane hydrate reformation. Energy Fuel 33:3439–3447 CrossRef Cheng C-X, Tian Y-J, Wang F, Wu X-H, Zheng J-L, Zhang J, Li L-W, Yang P-L (2019) Experimental study on the morphology and memory effect of methane hydrate reformation. Energy Fuel 33:3439–3447 CrossRef
go back to reference Chuvilin E, Bukhanov B, Davletshina D, Grebenkin S, Istomin V (2018) Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences 8, 431 Chuvilin E, Bukhanov B, Davletshina D, Grebenkin S, Istomin V (2018) Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences 8, 431
go back to reference Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, Jetten MSM, de Jong AEE, Meisel OH, Rasigraf O, Slomp CP, in’t Zandt MH, Dolman AJ (2018) Methane feedbacks to the global climate system in a warmer world. Rev Geophys 56:207–250 CrossRef Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, Jetten MSM, de Jong AEE, Meisel OH, Rasigraf O, Slomp CP, in’t Zandt MH, Dolman AJ (2018) Methane feedbacks to the global climate system in a warmer world. Rev Geophys 56:207–250 CrossRef
go back to reference Elger J, Berndt C, Rüpke L, Krastel S, Gross F, Geissler WH (2018) Submarine slope failures due to pipe structure formation. Nat Commun 9:715 CrossRef Elger J, Berndt C, Rüpke L, Krastel S, Gross F, Geissler WH (2018) Submarine slope failures due to pipe structure formation. Nat Commun 9:715 CrossRef
go back to reference Ershov ED, Yakushev VS (1992) Experimental research on gas hydrate decomposition in frozen rocks. Cold Reg Sci Technol 20:147–156 CrossRef Ershov ED, Yakushev VS (1992) Experimental research on gas hydrate decomposition in frozen rocks. Cold Reg Sci Technol 20:147–156 CrossRef
go back to reference Falenty A, Kuhs WF (2009) „Self-Preservation“ of CO 2 gas hydrates – surface microstructure and ice perfection. J Phys Chem B 113:15975–15988 CrossRef Falenty A, Kuhs WF (2009) „Self-Preservation“ of CO 2 gas hydrates – surface microstructure and ice perfection. J Phys Chem B 113:15975–15988 CrossRef
go back to reference Hachikubo A, Takeya S, Chuvilin E, Istomin V (2011) Preservation phenomena of methane hydrate in pore spaces. Phys Chem Chem Phys 13:17449–17452 CrossRef Hachikubo A, Takeya S, Chuvilin E, Istomin V (2011) Preservation phenomena of methane hydrate in pore spaces. Phys Chem Chem Phys 13:17449–17452 CrossRef
go back to reference Handa YP (1986) Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J Chem Thermodnamics 18:891–902 Handa YP (1986) Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J Chem Thermodnamics 18:891–902
go back to reference Heeschen KU, Janoscha J, Spangenberg E, Schicks JM, Giese R (2020) The impact of ice on the tensile strength of unconsolidated sand-A model for gas hydrate-bearing sands? Marine and Petroleum Geology, 122, 104607 Heeschen KU, Janoscha J, Spangenberg E, Schicks JM, Giese R (2020) The impact of ice on the tensile strength of unconsolidated sand-A model for gas hydrate-bearing sands? Marine and Petroleum Geology, 122, 104607
go back to reference Horozal S, Bahk J-J, Urgeles R, Kim GY, Cukur D, Kim S-P, Lee GH, Lee SH, Ryu B-J, Kim J-H (2017) Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: Potential linkage between the occurrence of mass failures and gas hydrate dissociation. Mar Pet Geol 80:171–191 CrossRef Horozal S, Bahk J-J, Urgeles R, Kim GY, Cukur D, Kim S-P, Lee GH, Lee SH, Ryu B-J, Kim J-H (2017) Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: Potential linkage between the occurrence of mass failures and gas hydrate dissociation. Mar Pet Geol 80:171–191 CrossRef
go back to reference Kennett J, Cannariato KG, Hendy IL, Behl RJ (2003) Methane hydrates in quaternary climate change: the clathrate gun hypothesis. American Geophysical Union, Washington, DC CrossRef Kennett J, Cannariato KG, Hendy IL, Behl RJ (2003) Methane hydrates in quaternary climate change: the clathrate gun hypothesis. American Geophysical Union, Washington, DC CrossRef
go back to reference Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra L, Yvon-Lewis M, Weber SA, T. C. (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:312–315 CrossRef Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra L, Yvon-Lewis M, Weber SA, T. C. (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:312–315 CrossRef
go back to reference Kleber W, Bautsch H-J, Bohm KJ, Klimm D (2010) Einführung in die Kristallographie, 19. Aufl. Oldenbourg, München CrossRef Kleber W, Bautsch H-J, Bohm KJ, Klimm D (2010) Einführung in die Kristallographie, 19. Aufl. Oldenbourg, München CrossRef
go back to reference Kulenkampff J Spangenberg E (2005) Scientific Results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. In: Dallimore SR, Collett TS (Hrsg) Geological Survey of Canada, CD-ROM Kulenkampff J Spangenberg E (2005) Scientific Results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. In: Dallimore SR, Collett TS (Hrsg) Geological Survey of Canada, CD-ROM
go back to reference Kutzbach L, Overduin P, Pfeiffer E-M, Wetterich S, Zubrzycki S (2015) Terrestrischer und submariner Permafrost in der Arktis. In: Lozán JL, Grassl H, Kasang D, Notz D, Escher-Vetter H (Hrsg) Warnsignal Klima: Das Eis der Erde. 78–86 Kutzbach L, Overduin P, Pfeiffer E-M, Wetterich S, Zubrzycki S (2015) Terrestrischer und submariner Permafrost in der Arktis. In: Lozán JL, Grassl H, Kasang D, Notz D, Escher-Vetter H (Hrsg) Warnsignal Klima: Das Eis der Erde. 78–86
go back to reference Liu Z, Wei H, Peng L, Wei C, Ning F (2017) An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: the direct shear test. J Pet Sci Eng 149:56–64 CrossRef Liu Z, Wei H, Peng L, Wei C, Ning F (2017) An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: the direct shear test. J Pet Sci Eng 149:56–64 CrossRef
go back to reference Maeda N (2018) Interfacial nanobubbles and the memory effect of natural gas hydrates. J Phys Chem C 122:11399–11406 CrossRef Maeda N (2018) Interfacial nanobubbles and the memory effect of natural gas hydrates. J Phys Chem C 122:11399–11406 CrossRef
go back to reference Maslin M, Owen M, Day S, Long D (2004) Linking continental-slope failures and climate change: testing the clathrate gun hypothesis. Geol Soc Am 32:53–56 Maslin M, Owen M, Day S, Long D (2004) Linking continental-slope failures and climate change: testing the clathrate gun hypothesis. Geol Soc Am 32:53–56
go back to reference Mienert J, Vanneste M, Bünz S, Andreassen K, Haflidason H, Sejrup HP (2005) Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Mar Pet Geol 22:233–244 CrossRef Mienert J, Vanneste M, Bünz S, Andreassen K, Haflidason H, Sejrup HP (2005) Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Mar Pet Geol 22:233–244 CrossRef
go back to reference Reagan MT, Moridis GJ (2008) Dynamic response of oceanic hydrate deposits to ocean temperature change. J Geophys Res 113:C12023 Reagan MT, Moridis GJ (2008) Dynamic response of oceanic hydrate deposits to ocean temperature change. J Geophys Res 113:C12023
go back to reference Roger PM (2000) Methane hydrate – melting and memory. Ann New York Acad Sci 912:474–482 CrossRef Roger PM (2000) Methane hydrate – melting and memory. Ann New York Acad Sci 912:474–482 CrossRef
go back to reference Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55(1):126–168 CrossRef Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55(1):126–168 CrossRef
go back to reference Schicks JM, Ripmeester JA (2004) The coexistence of two different methane hydrate phases under moderate pressure and temperature conditions: kinetic versus thermodynamic products. Angew Chem Int Ed 43:3310–3313 CrossRef Schicks JM, Ripmeester JA (2004) The coexistence of two different methane hydrate phases under moderate pressure and temperature conditions: kinetic versus thermodynamic products. Angew Chem Int Ed 43:3310–3313 CrossRef
go back to reference Shakhova N, Semiletov I, Chuvilin E (2019) Associated methane releases in the East Siberian Arctic Shelf. Geosciences 9:251 CrossRef Shakhova N, Semiletov I, Chuvilin E (2019) Associated methane releases in the East Siberian Arctic Shelf. Geosciences 9:251 CrossRef
go back to reference Sowers T (2006) Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 311:838–840 CrossRef Sowers T (2006) Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 311:838–840 CrossRef
go back to reference Spangenberg E (2001) Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. J Geophys Res 106(B4):6535–6548 CrossRef Spangenberg E (2001) Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. J Geophys Res 106(B4):6535–6548 CrossRef
go back to reference Spangenberg E, Kulenkampff J (2006) Influence of methane hydrate content on electrical sediment properties. Geophys Res Lett 33:L24315 CrossRef Spangenberg E, Kulenkampff J (2006) Influence of methane hydrate content on electrical sediment properties. Geophys Res Lett 33:L24315 CrossRef
go back to reference Spangenberg E, Priegnitz M, Heeschen K, Schicks JM (2015) Are laboratory-formed hydrate-bearing systems analogous to those in nature? J Chem Eng Data 60:258–268 CrossRef Spangenberg E, Priegnitz M, Heeschen K, Schicks JM (2015) Are laboratory-formed hydrate-bearing systems analogous to those in nature? J Chem Eng Data 60:258–268 CrossRef
go back to reference Staykova DK, Kuhs WF, Salamatin AN, Hansen T (2003) Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model. J Phys Chem B 107:10299–10311 CrossRef Staykova DK, Kuhs WF, Salamatin AN, Hansen T (2003) Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model. J Phys Chem B 107:10299–10311 CrossRef
go back to reference Stern LA, Circone S, Kirby SH, Durham WB (2001) Anomalous preservation of pure methane hydrate at 1 atm. J Phys Chem B 105:1756–1762 CrossRef Stern LA, Circone S, Kirby SH, Durham WB (2001) Anomalous preservation of pure methane hydrate at 1 atm. J Phys Chem B 105:1756–1762 CrossRef
go back to reference Stern LA, Circone S, Kirby SH, Durham WB (2003) Temperature, pressure, and compositional effects on anomalous or „self“ preservation of gas hydrates. Can J Phys 81:271–283 CrossRef Stern LA, Circone S, Kirby SH, Durham WB (2003) Temperature, pressure, and compositional effects on anomalous or „self“ preservation of gas hydrates. Can J Phys 81:271–283 CrossRef
go back to reference Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15 CrossRef Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15 CrossRef
go back to reference Sultan N, Cochonat P, Foucher JP, Mienert J (2004) Effect of gas hydrates melting on seafloor slope instability. Marine Geology 213(1–4):379–401 Sultan N, Cochonat P, Foucher JP, Mienert J (2004) Effect of gas hydrates melting on seafloor slope instability. Marine Geology 213(1–4):379–401
go back to reference Thompson H, Soper AK, Buchanan P, Aldivan N, Creek JL, Koh CA (2006) Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement. J Chem Phys 124:164508 CrossRef Thompson H, Soper AK, Buchanan P, Aldivan N, Creek JL, Koh CA (2006) Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement. J Chem Phys 124:164508 CrossRef
go back to reference Yakushev VS, Chuvilin EM (2000) Cold regions. Sci Technol 31:189–197 Yakushev VS, Chuvilin EM (2000) Cold regions. Sci Technol 31:189–197
go back to reference You K, Flemings P (2014) Dynamics of permafrost associated methane hydrate during climate change. AGU Fall Meeting, 2014, Paper-Nr. OS21A-1114 You K, Flemings P (2014) Dynamics of permafrost associated methane hydrate during climate change. AGU Fall Meeting, 2014, Paper-Nr. OS21A-1114
go back to reference Yvon-Lewis SA, Hu L, Kessler J (2011) Methane flux to the atmosphere from the deepwater horizon oil disaster. Geophys Res Lett 38:L01602 CrossRef Yvon-Lewis SA, Hu L, Kessler J (2011) Methane flux to the atmosphere from the deepwater horizon oil disaster. Geophys Res Lett 38:L01602 CrossRef
go back to reference Zhang P, Wu Q, Mu C, Chen X (2018) Nucleation mechanisms of CO 2 hydrate reflected by gas solubility. Sci Rep 8:10441 CrossRef Zhang P, Wu Q, Mu C, Chen X (2018) Nucleation mechanisms of CO 2 hydrate reflected by gas solubility. Sci Rep 8:10441 CrossRef
go back to reference Zhu Y, Zhang Y, Wen H, Lu Z, Jia Z, Li Y, Li Q, Liu C, Wang P, Guo X (2010) Gas hydrates in the Qilian Mountain Permafrost, Qinghai, Northwest China. Acta Geol Sin 84(1):1–10 CrossRef Zhu Y, Zhang Y, Wen H, Lu Z, Jia Z, Li Y, Li Q, Liu C, Wang P, Guo X (2010) Gas hydrates in the Qilian Mountain Permafrost, Qinghai, Northwest China. Acta Geol Sin 84(1):1–10 CrossRef
Metadata
Title
Zersetzung natürlicher Gashydratvorkommen: potentielle Folgen für Hangstabilitäten und Klima
Author
Judith M. Schicks
Copyright Year
2021
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-62778-5_8

Premium Partner