Skip to main content

2016 | OriginalPaper | Buchkapitel

33. Enclosure Smoke Filling and Fire-Generated Environmental Conditions

verfasst von : Frederick W. Mowrer

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fires in buildings and other structures are distinguished from outdoor fires by the confinement effects associated with enclosure boundaries and by the ventilation effects associated with openings in these boundaries. The confinement of heat and smoke released by a fire in an enclosure gives rise to the evolution of fire-generated environmental conditions that can threaten life safety and cause thermal and nonthermal damage to the structure and its contents. For performance-based building fire safety analysis and design, it is important to be able to calculate the environmental conditions generated by fires in enclosures in order to evaluate the threat levels posed by anticipated fire scenarios. This chapter addresses the enclosure smoke-filling process and the fire-generated environmental conditions that develop within an enclosure during this process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
A
area (m2)
c p
specific heat at constant pressure (kJ/kg · K)
c v
specific heat at constant volume (kJ/kg · K)
C d
orifice flow coefficient (–)
\( d{m}_{{\mathrm{O}}_2} \)
mass of oxygen consumed by combustion (kg)
h
specific enthalpy (kJ/kg)
H
height of space from floor to ceiling (m)
k v
volumetric entrainment coefficient (m3/s · kW1/3 · m5/3)
m
mass (kg)
mass flow rate (kg/s)
P
pressure (Pa)
P o
atmospheric pressure (101,325 Pa)
Q f
heat released by combustion (kJ)
\( \dot{Q} \)
heat release rate (kW)
Q*
dimensionless heat release rate—\( \dot{Q}/\left({\rho}_a{c}_p{T}_a\sqrt{gH}{H}^2\right) \)
r air
air stoichiometric ratio (kg air/kg fuel)
\( {r}_{{\mathrm{O}}_2} \)
oxygen stoichiometric ratio (kg oxygen/kg fuel)
R
ideal gas constant of air (287.0 J/kg · K)
t
time (s)
T
temperature (K or °C)
u
specific internal energy (kJ/kg)
U
total internal energy (kJ)
v
velocity (m/s)
V
volume (m3)
\( \dot{V} \)
volumetric flow rate (m3/s)
X i
mole fraction of species i (n i /n total) (moles i /molestotal)
Y i
mass fraction of species i (m i /m total) (kg i /kgtotal)
z
elevation variable (m)
Greek Letters
α n
power law fire growth coefficient (kW/s n )
χ l
heat loss factor \( \left({\dot{Q}}_l/{\dot{Q}}_f\right) \) (–)
\( {\chi}_{{\mathrm{O}}_2} \)
oxygen consumption fraction (–)
ΔH c
fuel heat of combustion (kJ/kg)
ΔT
temperature rise above ambient (K or °C)
ρ
density (kg/m3)
τ
time constant (s)
Subscripts
atm
atmospheric
c
convective
e
exit
exp
expansion
ext
extraction
f
fire
g
global
i
in, interface
l
loss, lower layer
net
net
o
ambient, reference
O2
oxygen
p
constant pressure
pl
plume
r
radiative
s
space
tot
total
u, ul
upper layer
v
constant volume
Literatur
1.
Zurück zum Zitat E.E. Zukoski, “Development of a Stratified Ceiling Layer in the Early Stages of a Closed-Room Fire,” Fire and Materials, 2, pp. 54–62 (1978).CrossRef E.E. Zukoski, “Development of a Stratified Ceiling Layer in the Early Stages of a Closed-Room Fire,” Fire and Materials, 2, pp. 54–62 (1978).CrossRef
2.
Zurück zum Zitat L.Y. Cooper, “A Mathematical Model for Estimating Available Safe Egress Time from Fires,” Fire and Materials, 6, pp. 135–143 (1982).CrossRef L.Y. Cooper, “A Mathematical Model for Estimating Available Safe Egress Time from Fires,” Fire and Materials, 6, pp. 135–143 (1982).CrossRef
3.
Zurück zum Zitat L.Y. Cooper, “The Development of Hazardous Conditions in Enclosures with Growing Fires,” Combustion Science and Technology, 33, pp. 279–297 (1983).CrossRef L.Y. Cooper, “The Development of Hazardous Conditions in Enclosures with Growing Fires,” Combustion Science and Technology, 33, pp. 279–297 (1983).CrossRef
4.
Zurück zum Zitat W.D. Walton, “ASET-B: A Room Fire Program for Personal Computers,” Fire Technology, 21, pp. 293–309 (1985).CrossRef W.D. Walton, “ASET-B: A Room Fire Program for Personal Computers,” Fire Technology, 21, pp. 293–309 (1985).CrossRef
5.
Zurück zum Zitat H.E. Nelson, “FPETOOL: Fire Protection Engineering Tools for Hazard Estimation,” NISTIR 4380, National Institute of Standards and Technology, Gaithersburg, MD, General Services Administration, Washington, DC (Oct. 1990). H.E. Nelson, “FPETOOL: Fire Protection Engineering Tools for Hazard Estimation,” NISTIR 4380, National Institute of Standards and Technology, Gaithersburg, MD, General Services Administration, Washington, DC (Oct. 1990).
6.
Zurück zum Zitat M. Hurley, “ASET-B: Comparison of Model Predictions with Full-Scale Test Data,” Journal of Fire Protection Engineering, 13, 1, pp. 37–65 (2003).CrossRef M. Hurley, “ASET-B: Comparison of Model Predictions with Full-Scale Test Data,” Journal of Fire Protection Engineering, 13, 1, pp. 37–65 (2003).CrossRef
7.
Zurück zum Zitat F.W. Mowrer, “Methods of Quantitative Fire Hazard Analysis,” TR-100443, Electric Power Research Institute, Palo Alto, CA (May 1992). F.W. Mowrer, “Methods of Quantitative Fire Hazard Analysis,” TR-100443, Electric Power Research Institute, Palo Alto, CA (May 1992).
8.
Zurück zum Zitat Professional Loss Control, “Fire Induced Vulnerability Evaluation (FIVE),” TR-100370, Electric Power Research Institute, Palo Alto, CA (Apr. 1992). Professional Loss Control, “Fire Induced Vulnerability Evaluation (FIVE),” TR-100370, Electric Power Research Institute, Palo Alto, CA (Apr. 1992).
9.
Zurück zum Zitat J.A. Milke and F.W. Mowrer, “A Design Algorithm for Smoke Management Systems in Atria and Covered Malls,” Report No. FP93–04, Department of Fire Protection Engineering, University of Maryland (May 1993). J.A. Milke and F.W. Mowrer, “A Design Algorithm for Smoke Management Systems in Atria and Covered Malls,” Report No. FP93–04, Department of Fire Protection Engineering, University of Maryland (May 1993).
10.
Zurück zum Zitat NFPA 92B, Standard for Smoke Management Systems in Malls, Atria, and Large Spaces, National Fire Protection Association, Quincy, MA (2005). NFPA 92B, Standard for Smoke Management Systems in Malls, Atria, and Large Spaces, National Fire Protection Association, Quincy, MA (2005).
11.
Zurück zum Zitat F.W. Mowrer, “Enclosure Smoke Filling Revisited,” Fire Safety Journal, 33, pp. 93–114 (1999).CrossRef F.W. Mowrer, “Enclosure Smoke Filling Revisited,” Fire Safety Journal, 33, pp. 93–114 (1999).CrossRef
12.
Zurück zum Zitat F.W. Mowrer, “Enclosure Smoke Filling and Management with Mechanical Ventilation,” Fire Technology, 38, 1, January pp. 33–56 (2002). F.W. Mowrer, “Enclosure Smoke Filling and Management with Mechanical Ventilation,” Fire Technology, 38, 1, January pp. 33–56 (2002).
13.
Zurück zum Zitat K. Matsuyama, Y. Misawa, T. Wakamatsu, and K. Hamada, “Closed-Form Equations for Room Smoke Filling During an Initial Fire,” Fire Science and Technology, 19, pp. 1–27 (1999).CrossRef K. Matsuyama, Y. Misawa, T. Wakamatsu, and K. Hamada, “Closed-Form Equations for Room Smoke Filling During an Initial Fire,” Fire Science and Technology, 19, pp. 1–27 (1999).CrossRef
14.
Zurück zum Zitat M.A. Delichatsios, “Closed Form Approximate Solutions for Smoke Filling in Enclosures Including the Volume Expansion Term,” Fire Safety Journal, 38, pp. 97–101 (2003).CrossRef M.A. Delichatsios, “Closed Form Approximate Solutions for Smoke Filling in Enclosures Including the Volume Expansion Term,” Fire Safety Journal, 38, pp. 97–101 (2003).CrossRef
15.
Zurück zum Zitat M.A. Delichatsios, “Tenability Conditions and Filling Times for Fires in Large Spaces,” Fire Safety Journal, 24, pp. 643–662 (2004).CrossRef M.A. Delichatsios, “Tenability Conditions and Filling Times for Fires in Large Spaces,” Fire Safety Journal, 24, pp. 643–662 (2004).CrossRef
16.
Zurück zum Zitat C.M. Fleischmann and K.B. McGrattan, “Numerical and Experimental Gravity Currents Related to Backdrafts,” Fire Safety Journal, 33, 1, pp. 21–34 (1999).CrossRef C.M. Fleischmann and K.B. McGrattan, “Numerical and Experimental Gravity Currents Related to Backdrafts,” Fire Safety Journal, 33, 1, pp. 21–34 (1999).CrossRef
17.
Zurück zum Zitat S.P. Nowlen, “Enclosure Environment Characterization Testing for the Base Line Validation of Computer Fire Simulation Codes,” NUREG/CR-4681, SAND86–1296, Sandia National Laboratories, Albuquerque, NM (Mar. 1987). S.P. Nowlen, “Enclosure Environment Characterization Testing for the Base Line Validation of Computer Fire Simulation Codes,” NUREG/CR-4681, SAND86–1296, Sandia National Laboratories, Albuquerque, NM (Mar. 1987).
18.
Zurück zum Zitat R. Zalosh, “Explosion Protection,” in SFPE Fire Protection Handbook (P.J. DiNenno et al., eds.), National Fire Protection Association, Quincy, MA, pp. 3-402–3-421 (2003). R. Zalosh, “Explosion Protection,” in SFPE Fire Protection Handbook (P.J. DiNenno et al., eds.), National Fire Protection Association, Quincy, MA, pp. 3-402–3-421 (2003).
19.
Zurück zum Zitat M. Skelly, R. Roby, and C. Beyler, “An Experimental Investigation of Glass Breakage in Compartment Fires,” Journal of Fire Protection Engineering, 3, 1, pp. 25–34 (1991).CrossRef M. Skelly, R. Roby, and C. Beyler, “An Experimental Investigation of Glass Breakage in Compartment Fires,” Journal of Fire Protection Engineering, 3, 1, pp. 25–34 (1991).CrossRef
20.
Zurück zum Zitat P.E. Sincaglia and J.R. Barnett, “Development of a Glass Window Fracture Model for Zone-Type Computer Fire Codes,” Journal of Fire Protection Engineering, 8, 3, pp. 101–118 (1997).CrossRef P.E. Sincaglia and J.R. Barnett, “Development of a Glass Window Fracture Model for Zone-Type Computer Fire Codes,” Journal of Fire Protection Engineering, 8, 3, pp. 101–118 (1997).CrossRef
21.
Zurück zum Zitat F.W. Mowrer, “Window Breakage Induced by Exterior Fires,” NIST GCR 98–751, National Institute of Standards and Technology, Gaithersburg, MD (1998). F.W. Mowrer, “Window Breakage Induced by Exterior Fires,” NIST GCR 98–751, National Institute of Standards and Technology, Gaithersburg, MD (1998).
22.
Zurück zum Zitat J.D. Seader and I.N. Einhorn, “Some Physical, Chemical, Toxicological, and Physiological Aspects of Fire Smokes,” in 16th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1423–1445 (1977). J.D. Seader and I.N. Einhorn, “Some Physical, Chemical, Toxicological, and Physiological Aspects of Fire Smokes,” in 16th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, pp. 1423–1445 (1977).
23.
Zurück zum Zitat G.W. Muholland and C. Croarkin, “Specific Extinction Coefficient of Flame Generated Smoke,” Fire and Materials, 24, 5, pp. 39–55 (2000). G.W. Muholland and C. Croarkin, “Specific Extinction Coefficient of Flame Generated Smoke,” Fire and Materials, 24, 5, pp. 39–55 (2000).
24.
Zurück zum Zitat G. W. Mulholland, "Smoke Production and Properties," SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA, 2008. G. W. Mulholland, "Smoke Production and Properties," SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA, 2008.
25.
Zurück zum Zitat E.E. Zukoski, T. Kubota, and B. Cetegen, “Entrainment in Fire Plumes,” Fire Safety Journal, 3, pp. 107–121 (1980/1981). E.E. Zukoski, T. Kubota, and B. Cetegen, “Entrainment in Fire Plumes,” Fire Safety Journal, 3, pp. 107–121 (1980/1981).
26.
Zurück zum Zitat V. Ho, N. Siu, and G. Apostolakis, “COMPBRN III—A Fire Hazard Model for Risk Analysis,” Fire Safety Journal, 13, pp. 137–154 (1988).CrossRef V. Ho, N. Siu, and G. Apostolakis, “COMPBRN III—A Fire Hazard Model for Risk Analysis,” Fire Safety Journal, 13, pp. 137–154 (1988).CrossRef
27.
Zurück zum Zitat K.L. Foote, P.J. Pagni, and N.J. Alvares, “Temperature Correlations for Forced-Ventilation Compartment Fires,” Fire Safety Science—Proceedings of the First International Symposium, International Association for Fire Safety Science, London, UK (1986). K.L. Foote, P.J. Pagni, and N.J. Alvares, “Temperature Correlations for Forced-Ventilation Compartment Fires,” Fire Safety Science—Proceedings of the First International Symposium, International Association for Fire Safety Science, London, UK (1986).
28.
Zurück zum Zitat C. Beyler, “Analysis of Compartment Fires with Overhead Forced Ventilation,” Fire Safety Science—Proceedings of the Third International Symposium, International Association for Fire Safety Science, London, UK (1991). C. Beyler, “Analysis of Compartment Fires with Overhead Forced Ventilation,” Fire Safety Science—Proceedings of the Third International Symposium, International Association for Fire Safety Science, London, UK (1991).
29.
Zurück zum Zitat C.L. Beyler, “Fire Plumes and Ceiling Jets,” Fire Safety Journal, 11, 53, pp. 53–75 (1986). C.L. Beyler, “Fire Plumes and Ceiling Jets,” Fire Safety Journal, 11, 53, pp. 53–75 (1986).
30.
Zurück zum Zitat J.G. Quintiere and B.S. Grove, “Correlations for Fire Plumes,” NIST GCR 98–744, National Institute of Standards and Technology, Gaithersburg, MD (1998). J.G. Quintiere and B.S. Grove, “Correlations for Fire Plumes,” NIST GCR 98–744, National Institute of Standards and Technology, Gaithersburg, MD (1998).
31.
Zurück zum Zitat P.S. Ziesler, F.S. Gunnerson, and S.K. Williams, “Advances in Positive Pressure Ventilation: Live Fire Tests and Laboratory Simulation,” Fire Technology, 30, 2, pp. 269–277 (1994).CrossRef P.S. Ziesler, F.S. Gunnerson, and S.K. Williams, “Advances in Positive Pressure Ventilation: Live Fire Tests and Laboratory Simulation,” Fire Technology, 30, 2, pp. 269–277 (1994).CrossRef
32.
Zurück zum Zitat S. Kerber and W.D. Walton, “Full-Scale Evaluation of Positive Pressure Ventilation In a Fire Fighter Training Building,” NISTIR 7342 National Institute of Standards and Technology, Gaithersburg, MD (2006). S. Kerber and W.D. Walton, “Full-Scale Evaluation of Positive Pressure Ventilation In a Fire Fighter Training Building,” NISTIR 7342 National Institute of Standards and Technology, Gaithersburg, MD (2006).
33.
Zurück zum Zitat J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, 3rd ed., Springer-Verlag, New York (2002).CrossRefMATH J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, 3rd ed., Springer-Verlag, New York (2002).CrossRefMATH
34.
Zurück zum Zitat B. Hagglund, R. Jansson, and K. Nireus. “Smoke Filling Experiments in a 6 × 6 × 6 Meter Enclosure,” FOA Report C 20585-D6, National Defense Research Establishment, Stockholm, Sweden (1985). B. Hagglund, R. Jansson, and K. Nireus. “Smoke Filling Experiments in a 6 × 6 × 6 Meter Enclosure,” FOA Report C 20585-D6, National Defense Research Establishment, Stockholm, Sweden (1985).
35.
Zurück zum Zitat B. Karlsson and J. Quintiere, Enclosure Fire Dynamics, CRC Press, Boca Raton, FL (2000). B. Karlsson and J. Quintiere, Enclosure Fire Dynamics, CRC Press, Boca Raton, FL (2000).
36.
Zurück zum Zitat T. Yamana and T. Tanaka, “Smoke Control in Large Scale Spaces (Part 2: Smoke Control Experiments in a Large Scale Space),” Fire Science and Technology, 5, 1, pp. 41–54 (1985).CrossRef T. Yamana and T. Tanaka, “Smoke Control in Large Scale Spaces (Part 2: Smoke Control Experiments in a Large Scale Space),” Fire Science and Technology, 5, 1, pp. 41–54 (1985).CrossRef
Metadaten
Titel
Enclosure Smoke Filling and Fire-Generated Environmental Conditions
verfasst von
Frederick W. Mowrer
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_33