Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

08.03.2021

Encryption Based Strategy to Overcome the Problem of Pilot Contamination Within Multi-cellular Massive MIMO Systems

verfasst von: Mohamed Boulouird, Abdelfettah Belhabib, Abdelhamid Riadi

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problem of inter-cell interferences keeps its site as the most challenging constraint that faces the massive multi-input multi-output (M-MIMO) technology. This constraint, known as the problem of pilot contamination (PC), is a direct result of reusing the same set of orthogonal pilot sequences (OPSs) across several cells, due to the scarcity of available pilot resources, compared to the number of the user equipments (UEs) that must be served, the reuse of the same OPSs within different cells is unavoidable. Accordingly, assigning the available OPSs to the UEs should be managed to address the PC problem. To reach that goal, a new decontaminating strategy is proposed herein, which is referred to as the ENCryption-based decontaminating strategy (ENC). The ENC strategy is based on injecting some recognition pilot symbols within the pilot sequence of the UEs; hence, the base stations become able to distinguish between the desired pilot signals from the undesired ones, therefore, the quality of servicecan be enhanced, furthermore, the proposed ENC strategy is of low computational complexity compared to the existing strategies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef
2.
Zurück zum Zitat Lu, L., et al. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef Lu, L., et al. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.CrossRef
3.
Zurück zum Zitat Ahmadabadian, M., et al. (2020). Energy efficiency maximization in FDD massive MIMO systems with channel aging. Wireless Networks, 26, 4031–4044.CrossRef Ahmadabadian, M., et al. (2020). Energy efficiency maximization in FDD massive MIMO systems with channel aging. Wireless Networks, 26, 4031–4044.CrossRef
4.
Zurück zum Zitat Sanguinetti, L., et al. (2020). Toward massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination. IEEE Transactions on Communications, 68(1), 232–257.CrossRef Sanguinetti, L., et al. (2020). Toward massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination. IEEE Transactions on Communications, 68(1), 232–257.CrossRef
5.
Zurück zum Zitat Bjornson, E., et al. (2017). Massive MIMO networks: Spectral, energy, and hardware efficiency. Foundations and Trends in Signal Processing, 11(3–4), 154–655.CrossRef Bjornson, E., et al. (2017). Massive MIMO networks: Spectral, energy, and hardware efficiency. Foundations and Trends in Signal Processing, 11(3–4), 154–655.CrossRef
6.
Zurück zum Zitat Elijah, O., et al. (2016). A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Communications Surveys and Tutorials, 18(2), 905–923.CrossRef Elijah, O., et al. (2016). A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Communications Surveys and Tutorials, 18(2), 905–923.CrossRef
8.
Zurück zum Zitat Belhabib, A., Boulouird, M., & Hassani, M. M. (2019). Mitigation techniques of pilot contamination in massive MIMO systems for 5G wireless communications: An overview. Colloque International TELECOM 2019 & 11\(\grave{e}\)mes JFMMA, Saidia, Morocco. Belhabib, A., Boulouird, M., & Hassani, M. M. (2019). Mitigation techniques of pilot contamination in massive MIMO systems for 5G wireless communications: An overview. Colloque International TELECOM 2019 & 11\(\grave{e}\)mes JFMMA, Saidia, Morocco.
9.
Zurück zum Zitat Qi, C., et al. (2020). QoS constrained pilot allocation scheme for massive MIMO systems. IEEE Transactions on Vehicular Technology, 69(5), 5661–5665.CrossRef Qi, C., et al. (2020). QoS constrained pilot allocation scheme for massive MIMO systems. IEEE Transactions on Vehicular Technology, 69(5), 5661–5665.CrossRef
10.
Zurück zum Zitat Hua, Y. K., Chang, W., & Su, S. L. (2020). Cooperative scheduling for pilot reuse in massive MIMO systems. IEEE Transactions on Vehicular Technology, 69(11), 12857–12869.CrossRef Hua, Y. K., Chang, W., & Su, S. L. (2020). Cooperative scheduling for pilot reuse in massive MIMO systems. IEEE Transactions on Vehicular Technology, 69(11), 12857–12869.CrossRef
11.
Zurück zum Zitat Zhu, X., et al. (2015). Graph coloring based pilot allocation to mitigate pilot contamination for multi-cell massive MIMO systems. IEEE Communications Letters, 19(10), 1842–1845.CrossRef Zhu, X., et al. (2015). Graph coloring based pilot allocation to mitigate pilot contamination for multi-cell massive MIMO systems. IEEE Communications Letters, 19(10), 1842–1845.CrossRef
12.
Zurück zum Zitat Zhu, X., et al. (2017). Weighted-graph-coloring-based pilot decontamination for multicell massive MIMO systems. IEEE Transactions on Vehicular Technology, 66(3), 2829–2834.CrossRef Zhu, X., et al. (2017). Weighted-graph-coloring-based pilot decontamination for multicell massive MIMO systems. IEEE Transactions on Vehicular Technology, 66(3), 2829–2834.CrossRef
13.
Zurück zum Zitat Fan, J., et al. (2018). Pilot contamination mitigation by fractional pilot reuse with threshold optimization in massive MIMO systems. Digital Signal Processing, 78, 197–204.CrossRef Fan, J., et al. (2018). Pilot contamination mitigation by fractional pilot reuse with threshold optimization in massive MIMO systems. Digital Signal Processing, 78, 197–204.CrossRef
14.
Zurück zum Zitat Chang, W., et al. (2018). Weighted graph coloring based softer pilot reuse for TDD massive MIMO systems. IEEE Transactions on Vehicular Technology, 67(7), 6272–6285.CrossRef Chang, W., et al. (2018). Weighted graph coloring based softer pilot reuse for TDD massive MIMO systems. IEEE Transactions on Vehicular Technology, 67(7), 6272–6285.CrossRef
15.
Zurück zum Zitat Poddar, J., & Subhashini, K. R. (2020). An approach for data rate maximization and interference mitigation in massive MIMO communication systems using SRPWGC-PD algorithm. Wireless Personal Communications, 115, 499–525.CrossRef Poddar, J., & Subhashini, K. R. (2020). An approach for data rate maximization and interference mitigation in massive MIMO communication systems using SRPWGC-PD algorithm. Wireless Personal Communications, 115, 499–525.CrossRef
16.
Zurück zum Zitat Akhlaghpasand, H., et al. (2020). Jamming suppression in massive MIMO systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(1), 182–186.CrossRef Akhlaghpasand, H., et al. (2020). Jamming suppression in massive MIMO systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(1), 182–186.CrossRef
17.
Zurück zum Zitat Hassan, M., et al. (2020). Pilot contamination attack detection for multi-cell MU-massive MIMO system. International Journal of Electronics and Communications, 113, 152945.CrossRef Hassan, M., et al. (2020). Pilot contamination attack detection for multi-cell MU-massive MIMO system. International Journal of Electronics and Communications, 113, 152945.CrossRef
18.
Zurück zum Zitat Shao, L. (2019). Coordinated multicell beamforming and power allocation for massive MIMO: A large system analysis. Signal Processing, 164, 41–47.CrossRef Shao, L. (2019). Coordinated multicell beamforming and power allocation for massive MIMO: A large system analysis. Signal Processing, 164, 41–47.CrossRef
19.
Zurück zum Zitat Huang, Y., et al. (2013). Joint beamforming and power control in coordinated multicell: Max–min duality, effective network and large system transition. IEEE Transactions on Wireless Communications, 12(6), 2730–2742.CrossRef Huang, Y., et al. (2013). Joint beamforming and power control in coordinated multicell: Max–min duality, effective network and large system transition. IEEE Transactions on Wireless Communications, 12(6), 2730–2742.CrossRef
21.
Zurück zum Zitat Zhu, X., et al. (2016). Soft pilot reuse and multicell block diagonalization precoding for massive MIMO systems. IEEE Transactions on Vehicular Technology, 65(5), 3285–3298.CrossRef Zhu, X., et al. (2016). Soft pilot reuse and multicell block diagonalization precoding for massive MIMO systems. IEEE Transactions on Vehicular Technology, 65(5), 3285–3298.CrossRef
22.
Zurück zum Zitat Kenarsari, S. R., & Naeiny, M. F. (2019). Adaptive pilot reuse scheme for nonzero neighborhood structured downlink channel in massive MIMO. International Journal of Electronics and Communications, 99, 48–58.CrossRef Kenarsari, S. R., & Naeiny, M. F. (2019). Adaptive pilot reuse scheme for nonzero neighborhood structured downlink channel in massive MIMO. International Journal of Electronics and Communications, 99, 48–58.CrossRef
23.
Zurück zum Zitat Chang, W., et al. (2017). Partial overlapped time-shifted pilots for massive MIMO systems. IEEE Communications Letters, 21(11), 2480–2483.CrossRef Chang, W., et al. (2017). Partial overlapped time-shifted pilots for massive MIMO systems. IEEE Communications Letters, 21(11), 2480–2483.CrossRef
24.
Zurück zum Zitat Belhabib, A., Boulouird, M., & Hassani, M. M. (2020). Smart switching strategy-based supervision rule to mitigate the problem of pilot contamination in massive MIMO systems. Wireless Communications and Mobile Computing, 2020, 8868597. https://doi.org/10.1155/2020/8868597. Belhabib, A., Boulouird, M., & Hassani, M. M. (2020). Smart switching strategy-based supervision rule to mitigate the problem of pilot contamination in massive MIMO systems. Wireless Communications and Mobile Computing, 2020, 8868597. https://​doi.​org/​10.​1155/​2020/​8868597.
26.
Zurück zum Zitat Ghori, M. U., et al. (2018). Comparative analysis of intercell interference mitigation techniques in LTE-A network. Wireless Personal Communication, 99, 1159.CrossRef Ghori, M. U., et al. (2018). Comparative analysis of intercell interference mitigation techniques in LTE-A network. Wireless Personal Communication, 99, 1159.CrossRef
27.
Zurück zum Zitat Marzetta, T. L., et al. (2016). Fundamentals of massive MIMO. Cambridge University Press.CrossRef Marzetta, T. L., et al. (2016). Fundamentals of massive MIMO. Cambridge University Press.CrossRef
28.
Zurück zum Zitat Ngo, H. Q., & Larsson, E. G. (2017). No downlink pilots are needed in TDD massive MIMO. IEEE Transactions on Wireless Communications, 16(5), 2921–2935.CrossRef Ngo, H. Q., & Larsson, E. G. (2017). No downlink pilots are needed in TDD massive MIMO. IEEE Transactions on Wireless Communications, 16(5), 2921–2935.CrossRef
29.
Zurück zum Zitat Bjornson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef Bjornson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef
Metadaten
Titel
Encryption Based Strategy to Overcome the Problem of Pilot Contamination Within Multi-cellular Massive MIMO Systems
verfasst von
Mohamed Boulouird
Abdelfettah Belhabib
Abdelhamid Riadi
Publikationsdatum
08.03.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08349-8

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

OriginalPaper

Personal Cloud P2P

Neuer Inhalt