Skip to main content
main-content

09.09.2021 | Energiespeicher | Nachricht | Onlineartikel

Elektrolyseure für eine nachhaltige Energiewirtschaft

Autor:
Leyla Buchholz
2 Min. Lesedauer

Die Universität Bayreuth erforscht im H₂Giga-Projekt die Entwicklung und industrielle Fertigung leistungsstarker und kostengünstiger Elektrolyseure, mit denen der Bedarf Deutschlands an grünem Wasserstoff künftig gedeckt werden kann.

Grüner Wasserstoff, der große Mengen nachhaltig erzeugter Energie speichert und über lange Strecken transportiert werden kann, ist von zentraler Bedeutung für die künftige Energieversorgung. Schon heute ist absehbar, dass sich der künftige Bedarf allein in Deutschland auf mehrere hundert Millionen Tonnen jährlich belaufen wird. Zur Deckung dieses Bedarfs sind effiziente, robuste und kostengünstige Elektrolyseure erforderlich, die mittels elektrischer Energie aus nachhaltigen Quellen Wassermoleküle aufspalten und so Wasserstoff erzeugen. Die Elektrolyseure müssen in industrieller Serienfertigung hergestellt werden und in der Lage sein, bis 2030 die von der Wasserstoffstrategie der Europäischen Union vorgegebene Zielmarke von 40 Gigawatt Elektrolysekapazität zu erreichen.

Die Hochtemperaturelektrolyse (HTEL) hat sich als eine besonders vielversprechende Technologie zur Erzeugung von grünem Wasserstoff erwiesen. Als Elektrolyseure dienen hintereinander geschaltete HTEL-Zellen, die als HTEL-Stacks bezeichnet werden. Damit der Energiewirtschaft in Zukunft großskalige HTEL-Zellen und HTEL-Stacks zur Verfügung stehen, sind allerdings noch erhebliche Forschungs- und Entwicklungsschritte nötig: Sie betreffen die Lebensdauer, die Materialkosten, die Effizienz, neue Technologien zur Fertigung der Stacks sowie deren Einsatz für die Wasserstoffproduktion in den benötigten hohen Mengen.

Alterungsprozesse vorhersagen

Genau hier setzt das H₂Giga-Projekt "HTs: HTEL-Stacks – Ready for Gigawatt" an. Der Lehrstuhl Keramische Werkstoffe an der Universität Bayreuth ist hier für entscheidende Forschungs- und Entwicklungsschritte verantwortlich: Sowohl neue als auch schon im Betrieb befindliche Elektrolyseurzellen, die auf einem Elektrolyten aus Zirkonoxid basieren, sollen auf ihre Mikrostruktur und thermomechanischen Eigenschaften hin untersucht werden. Dabei ist es besonders wichtig, dass die Festigkeit der Zellen bei hohen Temperaturen bis zu 850 °C erhalten bleibt. Nur wenn die Zusammenhänge zwischen der Mikrostruktur und thermomechanischen Eigenschaften wissenschaftlich verstanden sind, wird es möglich sein, Alterungsprozesse in den Zellen vorherzusagen und Strategien für eine hohe Langlebigkeit zu entwickeln. "Mit den speziellen Kompetenzen und langjährigen Forschungserfahrungen, die wir in früheren Projekten zur Brennstoffzelle und zur Charakterisierung von sehr dünnen keramischen Folien gewonnen haben, werden wir von Bayreuth aus wichtige Beiträge zu einer nachhaltigen Energiewirtschaft auf der Basis von Wasserstoff leisten können", sagt Prof. Dr.-Ing. Stefan Schafföner, Inhaber des Lehrstuhls Keramische Werkstoffe. Die Forschungsarbeiten seines Teams werden rückwirkend ab dem 1. Mai 2021 bis zum 31. März 2025 gefördert.

Weiterführende Themen

Die Hintergründe zu diesem Inhalt

2017 | OriginalPaper | Buchkapitel

Wasserstoff – Schlüsselelement von Power-to-X

Buchbeitrag Springer „Wasserstoff“
Quelle:
Wasserstoff und Brennstoffzelle

01.04.2020 | Interview | Ausgabe 2/2020

"Für die Energiewende müssen wir auf die Vielfalt setzen."

Das könnte Sie auch interessieren

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise