Skip to main content
Erschienen in: Meccanica 1-2/2017

15.02.2016

Energy approach to the unstressed geometry of single-walled carbon nanotubes

verfasst von: Rafael Merli, Salvador Monleón, Carlos Lázaro

Erschienen in: Meccanica | Ausgabe 1-2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the geometry of single-walled carbon nanotubes without any external loading is analyzed via an energy procedure. The nanotube is assumed to be inscribed into a perfect cylinder of unknown diameter, which is estimated by minimizing the total interatomic potential involved into a basic cell with several carbon atoms and their corresponding bonds. In this step, two interatomic potentials have been adopted in order to compare their influence on the obtained results. Our calculations show that the widely used conformal mapping is not the most suitable option to reproduce the geometry of single-walled nanotubes in absence of external loading. Likewise, a more accurate method to estimate the initial diameter of the nanotube is developed, yielding higher differences with smaller nanotubes in comparison with other published works. The present analysis can be useful in the framework of molecular mechanics or continuum models as an alternative way to introduce initial stresses (due to the curvature of the cylinder) in the mechanical analysis, against other involved methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Assisted Model Building with Energy Refinement, force field well-known in biomolecular simulation.
 
2
It results from the projection of the bond AB (or BP) on the cross section of the cylinder that involves the nanotube
 
Literatur
1.
Zurück zum Zitat Arroyo M, Belytschko T (2003) Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys Rev Lett 91:215505–215508ADSCrossRef Arroyo M, Belytschko T (2003) Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys Rev Lett 91:215505–215508ADSCrossRef
2.
Zurück zum Zitat Bagolini L, Gala F, Zollo G (2012) Methane cracking on single-wall carbon nanotubes studied by semi-empirical tigh binding simulations. Carbon 50:411–420CrossRef Bagolini L, Gala F, Zollo G (2012) Methane cracking on single-wall carbon nanotubes studied by semi-empirical tigh binding simulations. Carbon 50:411–420CrossRef
3.
Zurück zum Zitat Belytschko T, Xiao SP, Schatz GC et al (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430–235437ADSCrossRef Belytschko T, Xiao SP, Schatz GC et al (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430–235437ADSCrossRef
4.
Zurück zum Zitat Benvenuti E (2015) Elechtromechanical behavior, end enhancements and radial elasticity of single-walled CNTs: a physically-consistent model based on nonlocal charges. Int J Solids Struct 72:190–205CrossRef Benvenuti E (2015) Elechtromechanical behavior, end enhancements and radial elasticity of single-walled CNTs: a physically-consistent model based on nonlocal charges. Int J Solids Struct 72:190–205CrossRef
5.
Zurück zum Zitat Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074ADSCrossRefMATH Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074ADSCrossRefMATH
6.
Zurück zum Zitat Chang T, Geng J, Guo X (2006) Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc R Soc A 462:2523–2540ADSCrossRefMATH Chang T, Geng J, Guo X (2006) Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc R Soc A 462:2523–2540ADSCrossRefMATH
7.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Topics in Applied Physics (vol 80), Springer, Berlin Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Topics in Applied Physics (vol 80), Springer, Berlin
8.
Zurück zum Zitat Hernández E, Goze C, Bernier P et al (1998) Elastic properties of C and \(B_xC_yN_z\) composite Nanotubes. Phys Rev Lett 80:4502–4505ADSCrossRef Hernández E, Goze C, Bernier P et al (1998) Elastic properties of C and \(B_xC_yN_z\) composite Nanotubes. Phys Rev Lett 80:4502–4505ADSCrossRef
9.
Zurück zum Zitat Iijima S, Brabec C, Maiti A et al (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104:2089–2092ADSCrossRef Iijima S, Brabec C, Maiti A et al (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104:2089–2092ADSCrossRef
10.
Zurück zum Zitat Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499CrossRefMATH Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499CrossRefMATH
11.
Zurück zum Zitat Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces. Compos Sci Technol 63:1517–1524CrossRef Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces. Compos Sci Technol 63:1517–1524CrossRef
12.
Zurück zum Zitat Li X, Yang W, Liu B (2007) Bending induced rippling and twisting of multiwalled carbon nanotubes. Phys Rev Lett 98:205502–205505ADSCrossRef Li X, Yang W, Liu B (2007) Bending induced rippling and twisting of multiwalled carbon nanotubes. Phys Rev Lett 98:205502–205505ADSCrossRef
13.
Zurück zum Zitat Malagú M, Benvenuti E, Simone A (2015) One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes: a molecular structural mechanics characterizaton. Eur J Mech A Solids 54:160–170CrossRef Malagú M, Benvenuti E, Simone A (2015) One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes: a molecular structural mechanics characterizaton. Eur J Mech A Solids 54:160–170CrossRef
14.
Zurück zum Zitat Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66:1597–1605CrossRef Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66:1597–1605CrossRef
15.
Zurück zum Zitat Merli R, Lázaro C, Monleón S et al (2013) A molecular structural mechanics model applied to the static behavior of single-walled Carbon nanotubes: new general formulation. Comput Struct 127:68–87CrossRef Merli R, Lázaro C, Monleón S et al (2013) A molecular structural mechanics model applied to the static behavior of single-walled Carbon nanotubes: new general formulation. Comput Struct 127:68–87CrossRef
16.
Zurück zum Zitat Merli R, Lázaro C, Monleón S et al (2015) Geometrical nonlinear formulation of a molecular mechanics model applied to the structural analysis of single-walled carbon nanotubes. Int J Solids Struct. 58:157–177CrossRef Merli R, Lázaro C, Monleón S et al (2015) Geometrical nonlinear formulation of a molecular mechanics model applied to the structural analysis of single-walled carbon nanotubes. Int J Solids Struct. 58:157–177CrossRef
17.
Zurück zum Zitat Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for singlewalled carbon nanotubes. Carbon 42:39–45CrossRef Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for singlewalled carbon nanotubes. Carbon 42:39–45CrossRef
18.
Zurück zum Zitat Natsuki T, Endo M (2004) Stress simulation of carbon nanotubes in tension and compression. Carbon 42:2147–2151CrossRef Natsuki T, Endo M (2004) Stress simulation of carbon nanotubes in tension and compression. Carbon 42:2147–2151CrossRef
19.
Zurück zum Zitat Odegard GM, Gates TS, Nicholson LM et al (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880CrossRef Odegard GM, Gates TS, Nicholson LM et al (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880CrossRef
20.
Zurück zum Zitat Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52:789–821ADSCrossRefMATH Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52:789–821ADSCrossRefMATH
21.
Zurück zum Zitat Paulson S, Falvo MR, Snider N et al (1999) In situ resistance measurements of strained carbon nanotubes. Appl Phys Lett 75:2936–2938ADSCrossRef Paulson S, Falvo MR, Snider N et al (1999) In situ resistance measurements of strained carbon nanotubes. Appl Phys Lett 75:2936–2938ADSCrossRef
22.
Zurück zum Zitat Rochefort A, Avouris P, Lesage F et al (1999) Electrical and mechanical properties of distorted carbon nanotubes. Phys Rev B 60:13824–13830ADSCrossRef Rochefort A, Avouris P, Lesage F et al (1999) Electrical and mechanical properties of distorted carbon nanotubes. Phys Rev B 60:13824–13830ADSCrossRef
23.
Zurück zum Zitat Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592–12595ADSCrossRef Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592–12595ADSCrossRef
24.
Zurück zum Zitat Srivastava D, Menon M, Cho K (1999) Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys Rev Lett 83:2973–2976ADSCrossRef Srivastava D, Menon M, Cho K (1999) Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys Rev Lett 83:2973–2976ADSCrossRef
25.
Zurück zum Zitat Tersoff J, Ruoff RS (1994) Structural properties of a carbon-nanotube crystal. Phys Rev Lett 73:676–679ADSCrossRef Tersoff J, Ruoff RS (1994) Structural properties of a carbon-nanotube crystal. Phys Rev Lett 73:676–679ADSCrossRef
26.
Zurück zum Zitat Wang Q (2004) Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int J Solids Struct 41:5451–5461CrossRefMATH Wang Q (2004) Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int J Solids Struct 41:5451–5461CrossRefMATH
27.
Zurück zum Zitat Wang X, Wang X, Xiao J (2005) A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformations. Compos Struct 69:315–321CrossRef Wang X, Wang X, Xiao J (2005) A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformations. Compos Struct 69:315–321CrossRef
28.
Zurück zum Zitat Xiao J, Gama B, Gillespie J Jr (2005) An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int J Solids Struct 42:3075–3092CrossRefMATH Xiao J, Gama B, Gillespie J Jr (2005) An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int J Solids Struct 42:3075–3092CrossRefMATH
29.
Zurück zum Zitat Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514ADSCrossRef Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514ADSCrossRef
30.
Zurück zum Zitat Zaeri MM, Ziaei-Rad S, Vahedi A et al (2010) Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon 48:3916–3930CrossRef Zaeri MM, Ziaei-Rad S, Vahedi A et al (2010) Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon 48:3916–3930CrossRef
Metadaten
Titel
Energy approach to the unstressed geometry of single-walled carbon nanotubes
verfasst von
Rafael Merli
Salvador Monleón
Carlos Lázaro
Publikationsdatum
15.02.2016
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1-2/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0389-z

Weitere Artikel der Ausgabe 1-2/2017

Meccanica 1-2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.