Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Energy Characteristics of Welding Heat Sources

verfasst von : Victor A. Karkhin

Erschienen in: Thermal Processes in Welding

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In most cases welding is carried out with local heating of bodies up to the temperature which is determined by the type of welding and properties of the materials to be welded.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alaluss, K., Buerkner, G., Nguyen-Chung, T., Gehde, M., & Mennig, G. (2010). Simulation of weld pool in plasma—MIG deposition welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 93–109). Graz: Verlag der Technischen Universitaet Graz. Alaluss, K., Buerkner, G., Nguyen-Chung, T., Gehde, M., & Mennig, G. (2010). Simulation of weld pool in plasma—MIG deposition welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 93–109). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Belousov, Yu. V. (2002). Evaluation of concentration of surface heat source with normally distributed heat power. Welding Production, 8, 8–12 (in Russian). Belousov, Yu. V. (2002). Evaluation of concentration of surface heat source with normally distributed heat power. Welding Production, 8, 8–12 (in Russian).
Zurück zum Zitat Bosworth, M. R. (1991) Effective heat input in pulsed current gas metal arc welding with solid wire electrodes. Welding Journal, 5, 111-s–117-s. Bosworth, M. R. (1991) Effective heat input in pulsed current gas metal arc welding with solid wire electrodes. Welding Journal, 5, 111-s–117-s.
Zurück zum Zitat Carlson, B. E., Wang, H. -P., Turichin, G. A., Valdaitseva, Y. A., Ivanov, S. Yu., & Karkhin, V. A. (2013). Mathematical model of plasma jet for plasma arc brazing. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 737–751). Graz: Verlag der Technischen Universitaet Graz. Carlson, B. E., Wang, H. -P., Turichin, G. A., Valdaitseva, Y. A., Ivanov, S. Yu., & Karkhin, V. A. (2013). Mathematical model of plasma jet for plasma arc brazing. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 737–751). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Cho, W. -I., Na, S. -Y., Cho, M. -H., & Lee, J. -S. (2010). A transient investigation of laser–arc hybrid welding by numerical simulation. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 57–63). Graz: Verlag der Technischen Universitaet Graz. Cho, W. -I., Na, S. -Y., Cho, M. -H., & Lee, J. -S. (2010). A transient investigation of laser–arc hybrid welding by numerical simulation. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 57–63). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Choo, R. T. C., Szekely, J., & Westhoff, R. C. (1990). Modelling of high-current arcs with emphasis on free surface phenomena in the weld pool. Welding Journal, 9, 346-s–361-s. Choo, R. T. C., Szekely, J., & Westhoff, R. C. (1990). Modelling of high-current arcs with emphasis on free surface phenomena in the weld pool. Welding Journal, 9, 346-s–361-s.
Zurück zum Zitat Christensen, N., Davies, V. L., & Gjermundsen, K. (1965). Distribution of temperatures in arc welding. British Welding Journal, 54–75. Christensen, N., Davies, V. L., & Gjermundsen, K. (1965). Distribution of temperatures in arc welding. British Welding Journal, 54–75.
Zurück zum Zitat Doan, G. E., & Lorentz, R. E. (1941). Crater formation and the force of the electric welding arc in various atmospheres. Welding Journal, 20, 103-s–108-s. Doan, G. E., & Lorentz, R. E. (1941). Crater formation and the force of the electric welding arc in various atmospheres. Welding Journal, 20, 103-s–108-s.
Zurück zum Zitat Dresvin, S. V. (Ed.). (1972). Physics and techniques of low-temperature plasma (351 pp.). Moscow: Atomizdat (in Russian). Dresvin, S. V. (Ed.). (1972). Physics and techniques of low-temperature plasma (351 pp.). Moscow: Atomizdat (in Russian).
Zurück zum Zitat DuPont, J. N., & Marder, A. R. (1995). Thermal efficiency of arc welding processes. Welding Journal, 12, 406-s–416-s. DuPont, J. N., & Marder, A. R. (1995). Thermal efficiency of arc welding processes. Welding Journal, 12, 406-s–416-s.
Zurück zum Zitat Eagar, T. W., & Tsai, N. -S. (1983). Temperature fields produced by traveling distributed heat sources. Welding Journal, 12, 346-s–355-s. Eagar, T. W., & Tsai, N. -S. (1983). Temperature fields produced by traveling distributed heat sources. Welding Journal, 12, 346-s–355-s.
Zurück zum Zitat Evans, D. M., Huang, D., McClure, J. C., & Nunes, A. C. (1998). Arc efficiency of plasma arc welding. Welding Journal, 2, 53-s–58-s. Evans, D. M., Huang, D., McClure, J. C., & Nunes, A. C. (1998). Arc efficiency of plasma arc welding. Welding Journal, 2, 53-s–58-s.
Zurück zum Zitat Farmer, A. J. D., Haddad, G. N., & Cram, L. E. (1986). Temperature determinations in a free-burning arc: III measurements with molten anodes. Journal of Physics D: Applied Physics, 19, 1723–1730. Farmer, A. J. D., Haddad, G. N., & Cram, L. E. (1986). Temperature determinations in a free-burning arc: III measurements with molten anodes. Journal of Physics D: Applied Physics, 19, 1723–1730.
Zurück zum Zitat Finkelnburg, W., & Maecker, H. (1961). Electric arcs and thermal plasma (370 pp.). Moscow: Foreign Literature Publishing (in Russian). Finkelnburg, W., & Maecker, H. (1961). Electric arcs and thermal plasma (370 pp.). Moscow: Foreign Literature Publishing (in Russian).
Zurück zum Zitat Frolov (Ed.). (1988). Theory of welding processes (559 pp.). Moscow: Vysshaya Shkola (in Russian). Frolov (Ed.). (1988). Theory of welding processes (559 pp.). Moscow: Vysshaya Shkola (in Russian).
Zurück zum Zitat Fuerschbach, P. W. (1995). A dimensionless parameter model for arc welding processes/trends in welding research. In Proceedings of the 4th International Conference (pp. 493–497), 5–8 June 1995, Gatlinburg, Tennessee. Fuerschbach, P. W. (1995). A dimensionless parameter model for arc welding processes/trends in welding research. In Proceedings of the 4th International Conference (pp. 493–497), 5–8 June 1995, Gatlinburg, Tennessee.
Zurück zum Zitat Gage, R. M. (1959). Principles of the modern arc torch. Welding Journal, 38(10), 959–962. Gage, R. M. (1959). Principles of the modern arc torch. Welding Journal, 38(10), 959–962.
Zurück zum Zitat Galler, M., Ernst, W., Vallant, R., & Enzinger, N. (2010). Simulation based determination of the electrical contact resistance during resistance spot welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 883–900). Graz: Verlag der Technischen Universitaet Graz. Galler, M., Ernst, W., Vallant, R., & Enzinger, N. (2010). Simulation based determination of the electrical contact resistance during resistance spot welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 883–900). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Gelman, A. S. (1970). Principles of resistance welding (312 pp.). Moscow: Mashinostroenie (in Russian). Gelman, A. S. (1970). Principles of resistance welding (312 pp.). Moscow: Mashinostroenie (in Russian).
Zurück zum Zitat Gick, A. E. F., Quigley, M. B. C., & Richards, P. H. (1973). The use of electrostatic probes to measure the temperature profiles of welding arcs. Journal of Physics D: Applied Physics, 6, 1941–1949. Gick, A. E. F., Quigley, M. B. C., & Richards, P. H. (1973). The use of electrostatic probes to measure the temperature profiles of welding arcs. Journal of Physics D: Applied Physics, 6, 1941–1949.
Zurück zum Zitat Giedt, W. H., Tallerico, L. N., & Feurschbach, P. W. (1989). GTA welding efficiency: Calorimetric and temperature field measurements. Welding Journal, 1, 28-s–32-s. Giedt, W. H., Tallerico, L. N., & Feurschbach, P. W. (1989). GTA welding efficiency: Calorimetric and temperature field measurements. Welding Journal, 1, 28-s–32-s.
Zurück zum Zitat Glickstein, S. S. (1981). Basic studies of the arc welding process. In Trends in welding research in the United States. Proceedings of a Conference (pp. 3–51). Glickstein, S. S. (1981). Basic studies of the arc welding process. In Trends in welding research in the United States. Proceedings of a Conference (pp. 3–51).
Zurück zum Zitat Glickstein, S. S., & Friedmann, E. (1983). Temperature transients in gas tungsten arc weldments. Welding Review, 62(5), 72–73. Glickstein, S. S., & Friedmann, E. (1983). Temperature transients in gas tungsten arc weldments. Welding Review, 62(5), 72–73.
Zurück zum Zitat Grigoryants, A. G. (1994). Basics of laser material processing (313 pp.). Taylor and Francis Inc. Grigoryants, A. G. (1994). Basics of laser material processing (313 pp.). Taylor and Francis Inc.
Zurück zum Zitat Haddad, G. N., & Farmer, A. Y. D. (1984). Temperature determinations in a free–burning arc. I: experimental techniques and results in argon. Journal of Physics D, 17, 1189–1196. Haddad, G. N., & Farmer, A. Y. D. (1984). Temperature determinations in a free–burning arc. I: experimental techniques and results in argon. Journal of Physics D, 17, 1189–1196.
Zurück zum Zitat Haddad, G. N., Farmer, A. Y. D., Kovitya, P., & Cram, L. E. (1985). Physical processes in gas–tungsten arcs. IIW Doc. 212-627-85. Haddad, G. N., Farmer, A. Y. D., Kovitya, P., & Cram, L. E. (1985). Physical processes in gas–tungsten arcs. IIW Doc. 212-627-85.
Zurück zum Zitat Haelsig, A., Pehle, S., Kusch, M., & Mayr, P. (2017). Reducing potential errors in the calculation of cooling rates for typical arc welding processes. Welding in the World, 61, 745–754. Haelsig, A., Pehle, S., Kusch, M., & Mayr, P. (2017). Reducing potential errors in the calculation of cooling rates for typical arc welding processes. Welding in the World, 61, 745–754.
Zurück zum Zitat Hertel, M., Fuessel, U., Schnick, M., Reisgen, U., Mokrov, O., Zabirov, A., & Spille-Kohoff, A. (2013). Numerical simulation of arc and metal transfer in gas metal arc welding. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 67–81). Graz: Verlag der Technischen Universitaet Graz. Hertel, M., Fuessel, U., Schnick, M., Reisgen, U., Mokrov, O., Zabirov, A., & Spille-Kohoff, A. (2013). Numerical simulation of arc and metal transfer in gas metal arc welding. In C. Sommitsch & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 67–81). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Hiraoka, K., Shiwaku, T., & Ohji, T. (1997). Determining temperature distributions of gas tungsten arc (TIG) plasma by spectroscopic methods. Welding International, 11(9), 688–696. Hiraoka, K., Shiwaku, T., & Ohji, T. (1997). Determining temperature distributions of gas tungsten arc (TIG) plasma by spectroscopic methods. Welding International, 11(9), 688–696.
Zurück zum Zitat Hsu, K. C., Etemadi, K., & Pfender, E. (1983). Study of the free-burning high intensity argon arc. Journal of Applied Physics, 54, 1293–1301. Hsu, K. C., Etemadi, K., & Pfender, E. (1983). Study of the free-burning high intensity argon arc. Journal of Applied Physics, 54, 1293–1301.
Zurück zum Zitat Ishchenko, A. Ya., Podielnikov, S. V., & Poklyatsky, A. G. (2007). Friction stir welding of aluminium alloys (Review). The Paton Welding Journal, 11, 25–30. Ishchenko, A. Ya., Podielnikov, S. V., & Poklyatsky, A. G. (2007). Friction stir welding of aluminium alloys (Review). The Paton Welding Journal, 11, 25–30.
Zurück zum Zitat Jackson, C. E. (1960). The science of arc welding. Welding Journal, 39, 129-s–140-s, 177-s–190-s, 225-s–230-s. Jackson, C. E. (1960). The science of arc welding. Welding Journal, 39, 129-s–140-s, 177-s–190-s, 225-s–230-s.
Zurück zum Zitat Katsaounis, A. (1993). Heat flow and arc efficiency at high pressures in argon and helium tungsten arcs. Welding Journal, 9, 447-s–454-s. Katsaounis, A. (1993). Heat flow and arc efficiency at high pressures in argon and helium tungsten arcs. Welding Journal, 9, 447-s–454-s.
Zurück zum Zitat Key, J. F., Chan, J. W., & McIlwain, M. E. (1983). Process parameter influence on arc temperature distribution. Welding Journal, 62, 179-s–184-s. IIW Doc. 212-549-83. Key, J. F., Chan, J. W., & McIlwain, M. E. (1983). Process parameter influence on arc temperature distribution. Welding Journal, 62, 179-s–184-s. IIW Doc. 212-549-83.
Zurück zum Zitat Kobayashi, M., & Suga, T. (1979). A method for the spectral temperature measurement of a welding arc. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 25–37). Cambridge: The Welding Institute. Kobayashi, M., & Suga, T. (1979). A method for the spectral temperature measurement of a welding arc. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 25–37). Cambridge: The Welding Institute.
Zurück zum Zitat Kochergin, K. A. (1987). Resistance welding (240 pp.). Leningrad: Mashinostroenie (in Russian). Kochergin, K. A. (1987). Resistance welding (240 pp.). Leningrad: Mashinostroenie (in Russian).
Zurück zum Zitat Kopayev, B. V., Rybachuk, A. M., & Lebedev, V. A. (2006). On selection of empirical formulae for arc pressure distribution. Welding Production, 4, 3–8 (in Russian). Kopayev, B. V., Rybachuk, A. M., & Lebedev, V. A. (2006). On selection of empirical formulae for arc pressure distribution. Welding Production, 4, 3–8 (in Russian).
Zurück zum Zitat Kou, S., & Le, Y. (1984). Heat flow during the autogeneous GTA welding of aluminum alloy pipes. Metallurgical Transactions A, 15A(6), 1165–1171. Kou, S., & Le, Y. (1984). Heat flow during the autogeneous GTA welding of aluminum alloy pipes. Metallurgical Transactions A, 15A(6), 1165–1171.
Zurück zum Zitat Kovitya, P., & Lowke, J. J. (1982). Two-dimensional calculations in welding arcs in argon. IIW Doc. 212-534-82. Kovitya, P., & Lowke, J. J. (1982). Two-dimensional calculations in welding arcs in argon. IIW Doc. 212-534-82.
Zurück zum Zitat Kovitya, P., & Lowke, J. J. (1985). Two-dimensional analysis of free-burning arcs in argon. Journal of Physics D, 18, 53–70. Kovitya, P., & Lowke, J. J. (1985). Two-dimensional analysis of free-burning arcs in argon. Journal of Physics D, 18, 53–70.
Zurück zum Zitat Kudinov, V. V., & Ivanov, V. M. (1981). Plasma refractory coating (192 pp.). Moscow: Mashinostroenie (in Russian). Kudinov, V. V., & Ivanov, V. M. (1981). Plasma refractory coating (192 pp.). Moscow: Mashinostroenie (in Russian).
Zurück zum Zitat Lancaster, J. F. (Ed.). (1986). The physics of welding (2nd ed., 340 pp.). Oxford: Pergamon Press. Lancaster, J. F. (Ed.). (1986). The physics of welding (2nd ed., 340 pp.). Oxford: Pergamon Press.
Zurück zum Zitat Lancaster, J. F. (1987). The physics of fusion welding part 1: The electric arc in welding. In IEEE Proceedings, 134, Pt. B(5), 233–254. Lancaster, J. F. (1987). The physics of fusion welding part 1: The electric arc in welding. In IEEE Proceedings, 134, Pt. B(5), 233–254.
Zurück zum Zitat Lebedev, V. K., Chernenko, I. A., & Vill, V. I. (Eds.). (1987). Friction welding. Handbook (236 pp.). Leningrad: Mashinostroenie (in Russian). Lebedev, V. K., Chernenko, I. A., & Vill, V. I. (Eds.). (1987). Friction welding. Handbook (236 pp.). Leningrad: Mashinostroenie (in Russian).
Zurück zum Zitat Lee, S.-Y., & Na, S.-J. (1996). A numerical analysis of a stationary gas tungsten welding arc considering various electrode angles. Welding Journal, 9, 269-s–279-s. Lee, S.-Y., & Na, S.-J. (1996). A numerical analysis of a stationary gas tungsten welding arc considering various electrode angles. Welding Journal, 9, 269-s–279-s.
Zurück zum Zitat Leskov, G. I. (1970). Electric welding arc (335 pp.). Moscow: Mashinostroenie (in Russian). Leskov, G. I. (1970). Electric welding arc (335 pp.). Moscow: Mashinostroenie (in Russian).
Zurück zum Zitat Lindgren, L.-E. (2007). Computational welding mechanics. Thermomechanical and microstructural simulations (248 pp.). Cambridge: Woodhead Publishing Ltd. Lindgren, L.-E. (2007). Computational welding mechanics. Thermomechanical and microstructural simulations (248 pp.). Cambridge: Woodhead Publishing Ltd.
Zurück zum Zitat Lohwasser, D., & Chen, Z. (Eds.). (2010). Friction stir welding: From basics to applications (424 pp.). Oxford: Woodhead Publishing. Lohwasser, D., & Chen, Z. (Eds.). (2010). Friction stir welding: From basics to applications (424 pp.). Oxford: Woodhead Publishing.
Zurück zum Zitat Lopota, V. A., Turichin, G. A., Valdaytseva, E. A., Malkin, P. E., & Gumenyuk, A. V. (2006). Computer system for modelling of electron beam and laser welding. Automatic Welding, 2, 18–21 (in Russian). Lopota, V. A., Turichin, G. A., Valdaytseva, E. A., Malkin, P. E., & Gumenyuk, A. V. (2006). Computer system for modelling of electron beam and laser welding. Automatic Welding, 2, 18–21 (in Russian).
Zurück zum Zitat Lowke, J. J., & Tanaka, M. (2006). LTE—Diffusion approximation for arc calculations. Journal of Physics D: Applied Physics, 39, 3634–3643. Lowke, J. J., & Tanaka, M. (2006). LTE—Diffusion approximation for arc calculations. Journal of Physics D: Applied Physics, 39, 3634–3643.
Zurück zum Zitat Lu, M., & Kou, S. (1988). Power and current distributions in gas tungsten arcs. Welding Journal, 2, 29-s–34-s. Lu, M., & Kou, S. (1988). Power and current distributions in gas tungsten arcs. Welding Journal, 2, 29-s–34-s.
Zurück zum Zitat Makhnenko, V. I., & Kravtsov, T. G. (1976). Thermal processes in mechanized deposition on circular cylinder-shaped workpieces (159 pp.). Kiev: Naukova Dumka (in Russian). Makhnenko, V. I., & Kravtsov, T. G. (1976). Thermal processes in mechanized deposition on circular cylinder-shaped workpieces (159 pp.). Kiev: Naukova Dumka (in Russian).
Zurück zum Zitat Martin, J. (2006, Jan/Feb). Pushing the boundaries—Friction stir goes deeper than before. TWI Connect, 1. Martin, J. (2006, Jan/Feb). Pushing the boundaries—Friction stir goes deeper than before. TWI Connect, 1.
Zurück zum Zitat Matsunawa, A., & Nishiguchi, M. (1979). The cathode mechanism in free burning arcs with refractory electrodes: Probe measurement in low pressure arcs and the mechanism of a cathode plasma ball. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 67–77). Cambridge: The Welding Institute. Matsunawa, A., & Nishiguchi, M. (1979). The cathode mechanism in free burning arcs with refractory electrodes: Probe measurement in low pressure arcs and the mechanism of a cathode plasma ball. In W. Lucas (Ed.), Arc physics and weld pool behaviour (pp. 67–77). Cambridge: The Welding Institute.
Zurück zum Zitat Messler, R. W. Jr. (1999). Principles of welding: Processes, physics, chemistry, and metallurgy (662 pp.). New York: Wiley. Messler, R. W. Jr. (1999). Principles of welding: Processes, physics, chemistry, and metallurgy (662 pp.). New York: Wiley.
Zurück zum Zitat Metcalfe, J. C., & Quingley, M. B. C. (1975). Heat transfer in plasma-arc welding. Welding Journal, 54(3), 99-s–103-s. Metcalfe, J. C., & Quingley, M. B. C. (1975). Heat transfer in plasma-arc welding. Welding Journal, 54(3), 99-s–103-s.
Zurück zum Zitat Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Reports: A Review Journal. Materials Science and Engineering R, 50, 1–78. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Reports: A Review Journal. Materials Science and Engineering R, 50, 1–78.
Zurück zum Zitat Mishra, R. S., & Mahoney, M. W. (Eds.). (2007). Friction stir welding and processing (352 pp.). Materials Park, Ohio: ASM International. Mishra, R. S., & Mahoney, M. W. (Eds.). (2007). Friction stir welding and processing (352 pp.). Materials Park, Ohio: ASM International.
Zurück zum Zitat Mochizuki, M., Tanaka, M., & Okano, S. (2010). Distortion analysis by combining arc plasma process with weld mechanics. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 551–578 ). Graz: Verlag der Technischen Universitaet Graz. Mochizuki, M., Tanaka, M., & Okano, S. (2010). Distortion analysis by combining arc plasma process with weld mechanics. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 551–578 ). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Murphy, A. B., Tanaka, M., Yamamoto, K., Tashiro, S., Sato, T., & Lowke, J. J. (2009). Modelling of thermal plasmas for arc welding: The role of the shielding gas properties and of metal vapour. Journal of Physics D: Applied Physics, 42, 1–20. Murphy, A. B., Tanaka, M., Yamamoto, K., Tashiro, S., Sato, T., & Lowke, J. J. (2009). Modelling of thermal plasmas for arc welding: The role of the shielding gas properties and of metal vapour. Journal of Physics D: Applied Physics, 42, 1–20.
Zurück zum Zitat Murphy, A. B., & Thomas, D. G. (2017). Prediction of arc, weld pool and weld properties with a desktop computer model of metal-inert-gas welding. Welding in the World, 61, 623–633. Murphy, A. B., & Thomas, D. G. (2017). Prediction of arc, weld pool and weld properties with a desktop computer model of metal-inert-gas welding. Welding in the World, 61, 623–633.
Zurück zum Zitat Nerovny, V. M. (Ed.). (2016). Theory of welding processes (2nd ed., 702 pp.). Moscow: MVTU Publishing (in Russian). Nerovny, V. M. (Ed.). (2016). Theory of welding processes (2nd ed., 702 pp.). Moscow: MVTU Publishing (in Russian).
Zurück zum Zitat Nestor, O. H. (1962). Heat intensity and current density distributions at the anode of high-current, inert gas. Journal of Applied Physics, 33(5), 1638–1648. Nestor, O. H. (1962). Heat intensity and current density distributions at the anode of high-current, inert gas. Journal of Applied Physics, 33(5), 1638–1648.
Zurück zum Zitat Niles, R. W., & Jackson, C. E. (1975). Weld thermal efficiency of the GTAW process. Welding Journal, 1, 25 s–32 s. Niles, R. W., & Jackson, C. E. (1975). Weld thermal efficiency of the GTAW process. Welding Journal, 1, 25 s–32 s.
Zurück zum Zitat Nomura, K., Ogino, Y., Murakami, K., & Hirata, Y. (2010). Features of magnetic controlled TIG arc plasma—Modelling and experiment. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 83–91). Graz: Technischen Universitaet Graz. Nomura, K., Ogino, Y., Murakami, K., & Hirata, Y. (2010). Features of magnetic controlled TIG arc plasma—Modelling and experiment. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 83–91). Graz: Technischen Universitaet Graz.
Zurück zum Zitat Olsen, H. N. (1963). The electric arc as a light source for quantitative spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 3, 305–333. Olsen, H. N. (1963). The electric arc as a light source for quantitative spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 3, 305–333.
Zurück zum Zitat Olshansky, N. A. (Ed.). (1978). Welding in engineering industry. 1. Handbook (504 pp.). Moscow: Mashinostroenie (in Russian). Olshansky, N. A. (Ed.). (1978). Welding in engineering industry. 1. Handbook (504 pp.). Moscow: Mashinostroenie (in Russian).
Zurück zum Zitat Petrov, G. L., & Tumarev, A. S. (1977). Theory of welding processes (2nd ed., 392 pp.). Moscow: Vysshaya Shkola Publishing (in Russian). Petrov, G. L., & Tumarev, A. S. (1977). Theory of welding processes (2nd ed., 392 pp.). Moscow: Vysshaya Shkola Publishing (in Russian).
Zurück zum Zitat Petrunichev, V. A. (1960). Thermal and mechanical effect of high-power arc on weld pool. In N. N. Rykalin (Ed.), Processes of melting of base metal during welding (pp. 117–166). Moscow: Publishing House of the Academy of Sciences of the USSR (in Russian). Petrunichev, V. A. (1960). Thermal and mechanical effect of high-power arc on weld pool. In N. N. Rykalin (Ed.), Processes of melting of base metal during welding (pp. 117–166). Moscow: Publishing House of the Academy of Sciences of the USSR (in Russian).
Zurück zum Zitat Prokhorov, N. N. (1976). Physical processes in metals during welding. 2 Stresses, deformations and phase transformations (600 pp.). Moscow: Metallurgiya (in Russian). Prokhorov, N. N. (1976). Physical processes in metals during welding. 2 Stresses, deformations and phase transformations (600 pp.). Moscow: Metallurgiya (in Russian).
Zurück zum Zitat Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer. Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer.
Zurück zum Zitat Rykalin, N. N. (1951). Calculation of heat flow in welding (Z. Paley & C. M. Adams, Jr. Trans.) (337 pp.). Moscow. Rykalin, N. N. (1951). Calculation of heat flow in welding (Z. Paley & C. M. Adams, Jr. Trans.) (337 pp.). Moscow.
Zurück zum Zitat Rykalin, N. N. (1957). Berechnung der Waermevorgaenge beim Schweissen (326 pp.). Berlin: VEB Verlag Technik (in German). Rykalin, N. N. (1957). Berechnung der Waermevorgaenge beim Schweissen (326 pp.). Berlin: VEB Verlag Technik (in German).
Zurück zum Zitat Rykalin, N. N. (1974). Energy sources for welding. Welding in the World, 12(9/10), 227–248. Rykalin, N. N. (1974). Energy sources for welding. Welding in the World, 12(9/10), 227–248.
Zurück zum Zitat Rykalin, N. N., & Kulagin, I. D. (1953). Thermal parameters of the welding arc. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 10–58). Moscow: Publication of the USSR Academy of Sciences (in Russian). Rykalin, N. N., & Kulagin, I. D. (1953). Thermal parameters of the welding arc. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 10–58). Moscow: Publication of the USSR Academy of Sciences (in Russian).
Zurück zum Zitat Rykalin, N. N., & Shorshorov, M. H. (1953). Heating of thin metal sheets and massive workpieces with gas flame torch. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 89–111). Moscow: Publication of the USSR Academy of Sciences (in Russian). Rykalin, N. N., & Shorshorov, M. H. (1953). Heating of thin metal sheets and massive workpieces with gas flame torch. In V. P. Nikitin (Ed.), Thermal processes in welding (pp. 89–111). Moscow: Publication of the USSR Academy of Sciences (in Russian).
Zurück zum Zitat Rykalin, N., Uglov, A., & Kokora, A. (1978). Laser machining and welding (312 pp.). Moscow: Mir Publishers. Rykalin, N., Uglov, A., & Kokora, A. (1978). Laser machining and welding (312 pp.). Moscow: Mir Publishers.
Zurück zum Zitat Rykalin, N., Uglov, A., Zuev, I., & Kokora, A. (1988). Laser and electron beam material processing: Handbook (591 pp.). Moscow: Mir Publishers. Rykalin, N., Uglov, A., Zuev, I., & Kokora, A. (1988). Laser and electron beam material processing: Handbook (591 pp.). Moscow: Mir Publishers.
Zurück zum Zitat Sandvik (1977). Welding handbook (136 pp.). Sandviken: Sandvik Publication. Sandvik (1977). Welding handbook (136 pp.). Sandviken: Sandvik Publication.
Zurück zum Zitat Schmidt, H. N. B. (2010). Modelling thermal properties in friction stir welding. In D. Lohwasser, Z. Chen (Eds.), Friction stir welding. From basics to applications (pp. 277–313). Oxford: Woodhead Publishing. Schmidt, H. N. B. (2010). Modelling thermal properties in friction stir welding. In D. Lohwasser, Z. Chen (Eds.), Friction stir welding. From basics to applications (pp. 277–313). Oxford: Woodhead Publishing.
Zurück zum Zitat Schnick, M., Fussel, U., Hertel, M., Spille-Kohoff, A., & Murphy, A. B. (2010). Effects of metal vapour on the arc behaviour in GMA welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 43–56). Graz: Verlag der Technischer Universitaet Graz. Schnick, M., Fussel, U., Hertel, M., Spille-Kohoff, A., & Murphy, A. B. (2010). Effects of metal vapour on the arc behaviour in GMA welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 43–56). Graz: Verlag der Technischer Universitaet Graz.
Zurück zum Zitat Seyffarth, P., & Krivtsun, I. (2002). Laser-arc processes and their applications in welding and material treatment (200 pp.). Boca Raton: CRC Press. Seyffarth, P., & Krivtsun, I. (2002). Laser-arc processes and their applications in welding and material treatment (200 pp.). Boca Raton: CRC Press.
Zurück zum Zitat Smaars, E. A., & Acinger, K. (1968). Material transport and temperature distribution in arc between melting aluminium electrodes. IIW Doc. 212-162-68. Smaars, E. A., & Acinger, K. (1968). Material transport and temperature distribution in arc between melting aluminium electrodes. IIW Doc. 212-162-68.
Zurück zum Zitat Smartt, H. B., Stewart, J. A., & Einerson, C. J. (1986). Heat transfer in gas tungsten arc welding. ASM Metals/Materials Technology Series, 8511–011. Metals Park, Ohio, 1–14. Smartt, H. B., Stewart, J. A., & Einerson, C. J. (1986). Heat transfer in gas tungsten arc welding. ASM Metals/Materials Technology Series, 8511–011. Metals Park, Ohio, 1–14.
Zurück zum Zitat Sosnin, N. A., Yermakov, S. A., & Topolyansky, P. A. (2008). Plasma technologies (406 pp.). St. Petersburg: Polytechnic University Publishing (in Russian). Sosnin, N. A., Yermakov, S. A., & Topolyansky, P. A. (2008). Plasma technologies (406 pp.). St. Petersburg: Polytechnic University Publishing (in Russian).
Zurück zum Zitat Sudnik, V. A., & Ivanov, A. V. (1998). Mathematical model for heat source in gas metal arc welding. Part 1. Normal process. Welding Production, 9, 3–9 (in Russian). Sudnik, V. A., & Ivanov, A. V. (1998). Mathematical model for heat source in gas metal arc welding. Part 1. Normal process. Welding Production, 9, 3–9 (in Russian).
Zurück zum Zitat Sudnik, V. A., & Rybakov, A. S. (1992). Calculation and experimental models of the moving arc of a non-consumable electrode in argon. Welding International, 6(4), 301–303. Sudnik, V. A., & Rybakov, A. S. (1992). Calculation and experimental models of the moving arc of a non-consumable electrode in argon. Welding International, 6(4), 301–303.
Zurück zum Zitat Sudnik, V. A., Rybakov, A. S., & Zaytsev, O. I. (2005). Mathematical and computer software TIGSIM for analysis of arc welding with a non-consumable electrode in argon. In V. A. Sudnik (Ed.), Proceedings of International Conference on Computer Technologies in Joining of Materials (pp. 128–145). Tula: Tula State University Publishing (in Russian). Sudnik, V. A., Rybakov, A. S., & Zaytsev, O. I. (2005). Mathematical and computer software TIGSIM for analysis of arc welding with a non-consumable electrode in argon. In V. A. Sudnik (Ed.), Proceedings of International Conference on Computer Technologies in Joining of Materials (pp. 128–145). Tula: Tula State University Publishing (in Russian).
Zurück zum Zitat Sudnik, V. A., & Yerofeyev, V. A. (1988). Computer methods for research of welding processes (94 pp.). Tula: Publishing House of the Technical University (in Russian). Sudnik, V. A., & Yerofeyev, V. A. (1988). Computer methods for research of welding processes (94 pp.). Tula: Publishing House of the Technical University (in Russian).
Zurück zum Zitat Szekely, J. (1989). Transport phenomena in welds with emphasis on free surface phenomena. In Proceedings of 2nd International Conference on Trends in Welding Research (pp. 3–11). Szekely, J. (1989). Transport phenomena in welds with emphasis on free surface phenomena. In Proceedings of 2nd International Conference on Trends in Welding Research (pp. 3–11).
Zurück zum Zitat Thomas, W. M., Nicholas, E. D., Needhamm, J. C., Murch, M. G., Temple-Smith, P., & Dawes, C. J. (1991). Improvements relating to friction welding. European Patent Specification 0 615 480 B1 1991. Thomas, W. M., Nicholas, E. D., Needhamm, J. C., Murch, M. G., Temple-Smith, P., & Dawes, C. J. (1991). Improvements relating to friction welding. European Patent Specification 0 615 480 B1 1991.
Zurück zum Zitat Threadgill, P. L., Leonard, A. J., Shercliff, H. R., & Withers, P. J. (2009). Friction stir welding of aluminum alloys. International Materials Reviews, 54(2), 49–93. Threadgill, P. L., Leonard, A. J., Shercliff, H. R., & Withers, P. J. (2009). Friction stir welding of aluminum alloys. International Materials Reviews, 54(2), 49–93.
Zurück zum Zitat Tikhodeyev, G. M. (1961). Energetic properties of electric welding arc (254 pp.). Moscow: Publishing House of the USSR Academy of Sciences (in Russian). Tikhodeyev, G. M. (1961). Energetic properties of electric welding arc (254 pp.). Moscow: Publishing House of the USSR Academy of Sciences (in Russian).
Zurück zum Zitat Tsai, N. S., & Eagar, T. W. (1985). Distribution of the heat and current fluxes in gas tungsten arcs. Metallurgical Transactions B, 16B(12), 841–846. Tsai, N. S., & Eagar, T. W. (1985). Distribution of the heat and current fluxes in gas tungsten arcs. Metallurgical Transactions B, 16B(12), 841–846.
Zurück zum Zitat Tsarkov, A. V., & Orlik, G. V. (2001). Determination of concentration factor of welding arc in tungsten arc welding. Welding Production, 6, 3–5 (in Russian). Tsarkov, A. V., & Orlik, G. V. (2001). Determination of concentration factor of welding arc in tungsten arc welding. Welding Production, 6, 3–5 (in Russian).
Zurück zum Zitat Turichin, G., Valdaitseva, E., Pozdeeva, E., Dilthey, U., & Gumeniuk, A. (2008). Theoretical investigation of dynamic behaviour of molten pool in laser and hybrid welding with deep penetration. The Paton Welding Journal, 7, 11–15. Turichin, G., Valdaitseva, E., Pozdeeva, E., Dilthey, U., & Gumeniuk, A. (2008). Theoretical investigation of dynamic behaviour of molten pool in laser and hybrid welding with deep penetration. The Paton Welding Journal, 7, 11–15.
Zurück zum Zitat Turichin, G. A., Valdaytseva, E. A., Karkhin, V. A., Wang, H.-P., & Carlson, B. E. (2013). Modelling of plasma jet temperature field with slope incident on the surface with plasma and hybrid processing materials. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application (pp. 18–21) September 2013. St. Petersburg, Russia. St. Petersburg: St. Petersburg State Polytechnic University Publishing (pp. 52–64). Turichin, G. A., Valdaytseva, E. A., Karkhin, V. A., Wang, H.-P., & Carlson, B. E. (2013). Modelling of plasma jet temperature field with slope incident on the surface with plasma and hybrid processing materials. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application (pp. 18–21) September 2013. St. Petersburg, Russia. St. Petersburg: St. Petersburg State Polytechnic University Publishing (pp. 52–64).
Zurück zum Zitat Ushio, M., & Matsuda, F. (1982). Mathematical modeling of heat transfer of welding arc (Part 1). IIW Doc. 212-528-82. Ushio, M., & Matsuda, F. (1982). Mathematical modeling of heat transfer of welding arc (Part 1). IIW Doc. 212-528-82.
Zurück zum Zitat Vill, V. I. (1962). Friction welding of metals (114 pp.). American Welding Society. Vill, V. I. (1962). Friction welding of metals (114 pp.). American Welding Society.
Zurück zum Zitat Watkins, A. D., Smartt, H. B., & Einerson, C. Y. (1990). Heat transfer in gas metal arc welding. In Proceedings of 3rd Conference on Recent Trends in Welding Science and Technology. Metals Park (pp. 19–23). Ohio: ASM International. Watkins, A. D., Smartt, H. B., & Einerson, C. Y. (1990). Heat transfer in gas metal arc welding. In Proceedings of 3rd Conference on Recent Trends in Welding Science and Technology. Metals Park (pp. 19–23). Ohio: ASM International.
Zurück zum Zitat Wendelstorf, J., Decker, I., & Wohlfahrt, H. (1997). TIG and plasma arc modelling: A survey. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 3, pp. 848–897). London: The Institute of Materials. Wendelstorf, J., Decker, I., & Wohlfahrt, H. (1997). TIG and plasma arc modelling: A survey. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 3, pp. 848–897). London: The Institute of Materials.
Zurück zum Zitat Yamauchi, N., & Taka, T. (1979). TIG arc welding with hollow tungsten electrodes. IIW Doc. 212-452-79. Yamauchi, N., & Taka, T. (1979). TIG arc welding with hollow tungsten electrodes. IIW Doc. 212-452-79.
Zurück zum Zitat Yampolsky, V. M. (1972). Investigation of features of vacuum arc discharge with hollow cathode of welding type. Transactions of Institutes of Higher Education. Engineering, 7, 67–68 (in Russian). Yampolsky, V. M. (1972). Investigation of features of vacuum arc discharge with hollow cathode of welding type. Transactions of Institutes of Higher Education. Engineering, 7, 67–68 (in Russian).
Zurück zum Zitat Yerofeyev, V. A., & Maslennikov, A. V. (2005). Physical-mathematical model for multi-pass arc welding process/transactions of Tula State University. In Computer Technologies in Joining Materials, 3 (pp. 246–255). Tula: Tula State Technical University Publishing (in Russian). Yerofeyev, V. A., & Maslennikov, A. V. (2005). Physical-mathematical model for multi-pass arc welding process/transactions of Tula State University. In Computer Technologies in Joining Materials, 3 (pp. 246–255). Tula: Tula State Technical University Publishing (in Russian).
Zurück zum Zitat Yushchenko, K. A., Chervyakov, N. O., & Kalina, P. P. (2006). Energy characteristics of low-amperage arcs. The Paton Welding Journal, 4, 17–21. Yushchenko, K. A., Chervyakov, N. O., & Kalina, P. P. (2006). Energy characteristics of low-amperage arcs. The Paton Welding Journal, 4, 17–21.
Zurück zum Zitat Zaehr, J., Schnick, M., Fuessel, U., Lohse, M., & Sende, M. (2010). Numerical investigations of process gases and their influence on TIG—Welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 3, pp. 111–126). Graz: Technischen Universitaet Graz. Zaehr, J., Schnick, M., Fuessel, U., Lohse, M., & Sende, M. (2010). Numerical investigations of process gases and their influence on TIG—Welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 3, pp. 111–126). Graz: Technischen Universitaet Graz.
Zurück zum Zitat Zhu, P., Lowke, J. J., Morrow, R., & Haidar, J. (1995). Prediction of anode temperatures of free burning arcs. Journal of Physics D: Applied Physics, 28, 1369–a1376. Zhu, P., Lowke, J. J., Morrow, R., & Haidar, J. (1995). Prediction of anode temperatures of free burning arcs. Journal of Physics D: Applied Physics, 28, 1369–a1376.
Metadaten
Titel
Energy Characteristics of Welding Heat Sources
verfasst von
Victor A. Karkhin
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-5965-1_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.