Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

11.08.2020

Energy Efficient Inactive Node Detection Based Routing Protocol for Delay Tolerant Network

verfasst von: Qaisar Ayub, Sulma Rashid

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The delay tolerant network multi-copy protocols create and transmit multiple copies of each message that overload the buffer size, energy and bandwidth. The resource consumption is controlled by transmitting the messages to nodes having high encountering ability to meet their destinations. Hence, nodes loss energy only in transmitting and receiving messages and went to dead state. However, message transmission continues even though the destination is dead. This wastes the network resources because messages destining to dead node will not be able to find their destinations. The existing routing protocols focus on message transmissions and do not have any mechanism to detect inactive nodes or to stop massage replications destining to inactive nodes. In this paper we have proposed a routing protocol called as Energy Efficient Inactive Node Detecting Based Routing Protocol for Delay Tolerant Network (InD). The proposed protocol has employed the node mobility to detect inactive nodes. Moreover, an intelligent buffer management policy has been designed that detect and drop those messages which are destining to dead nodes. The real time mobility scenarios have been used to evaluate the performance of existing and proposed routing protocols under the metrics of message transmissions, message drop, and message delivery and hop count average.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. In Mobile computing (pp. 153–181). Springer, Boston. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. In Mobile computing (pp. 153–181). Springer, Boston.
2.
Zurück zum Zitat JMaltz, D. B., Johnson, D. A., & Josh, B. (2001). DSR: The dynamic source routing protocol for multi-hop wireless ad hoc networks (pp. 15213–3891). Pittsburgh: Computer Science Department Carnegie Mellon University Pittsburgh.CrossRef JMaltz, D. B., Johnson, D. A., & Josh, B. (2001). DSR: The dynamic source routing protocol for multi-hop wireless ad hoc networks (pp. 15213–3891). Pittsburgh: Computer Science Department Carnegie Mellon University Pittsburgh.CrossRef
3.
Zurück zum Zitat Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications (pp. 27–34). ACM. Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications (pp. 27–34). ACM.
4.
Zurück zum Zitat Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., & Weiss, H. (2007). Delay-tolerant networking architecture. No. RFC 4838. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., & Weiss, H. (2007). Delay-tolerant networking architecture. No. RFC 4838.
5.
Zurück zum Zitat Nelson, S. C., Bakht, M., Kravets, R., & Harris, A. F, I. I. I. (2009). Encounter: Based routing in DTNs. ACM SIGMOBILE Mobile Computing and Communications Review, 13(1), 56–59.CrossRef Nelson, S. C., Bakht, M., Kravets, R., & Harris, A. F, I. I. I. (2009). Encounter: Based routing in DTNs. ACM SIGMOBILE Mobile Computing and Communications Review, 13(1), 56–59.CrossRef
6.
Zurück zum Zitat Abdelkader, T., Naik, K., Nayak, A., Goel, N. (2010). A socially-based routing protocol for delay tolerant networks. In Global telecommunications conference (GLOBECOM 2010) (pp. 1–5). IEEE. Abdelkader, T., Naik, K., Nayak, A., Goel, N. (2010). A socially-based routing protocol for delay tolerant networks. In Global telecommunications conference (GLOBECOM 2010) (pp. 1–5). IEEE.
7.
Zurück zum Zitat Lindgren, A., & Phanse, K. S. (2006). Evaluation of queueing policies and forwarding strategies for routing in intermittently connected networks. In First international conference on communication system software and middleware, 2006. Comsware 2006 (pp. 1–10). IEEE. Lindgren, A., & Phanse, K. S. (2006). Evaluation of queueing policies and forwarding strategies for routing in intermittently connected networks. In First international conference on communication system software and middleware, 2006. Comsware 2006 (pp. 1–10). IEEE.
8.
Zurück zum Zitat Li, Y., Zhao, L., Liu, Z., & Liu, Q. (2009). N-Drop: Congestion control strategy under epidemic routing in DTN. In Proceedings of the 2009 international conference on wireless communications and mobile computing: Connecting the world wirelessly (pp. 457–460). ACM. Li, Y., Zhao, L., Liu, Z., & Liu, Q. (2009). N-Drop: Congestion control strategy under epidemic routing in DTN. In Proceedings of the 2009 international conference on wireless communications and mobile computing: Connecting the world wirelessly (pp. 457–460). ACM.
9.
Zurück zum Zitat Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network. In Proceedings of the 2004 conference on applications, technologies, architectures, and protocols for computer communications. SIGCOMM ’04 (pp. 145–158). ACM, New York, NY, USA. Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network. In Proceedings of the 2004 conference on applications, technologies, architectures, and protocols for computer communications. SIGCOMM ’04 (pp. 145–158). ACM, New York, NY, USA.
10.
Zurück zum Zitat Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2004). Single-copy routing in intermittently connected mobile networks. In Proceedings of IEEE conference sensor and ad hoc communications and networks (SECON) (pp. 235–244). IEEE. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2004). Single-copy routing in intermittently connected mobile networks. In Proceedings of IEEE conference sensor and ad hoc communications and networks (SECON) (pp. 235–244). IEEE.
11.
Zurück zum Zitat Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transactions on Networking, 16(1), 77–90.CrossRef Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transactions on Networking, 16(1), 77–90.CrossRef
12.
Zurück zum Zitat Vahdat, A., & Becker, D. (2000). Epidemic routing for partially connected ad hoc networks. Technical report. CS-200006, Duke University. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially connected ad hoc networks. Technical report. CS-200006, Duke University.
13.
Zurück zum Zitat Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In Proceeding of mobile computer and communication review (Vol. 7, pp. 252–259). ACM Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In Proceeding of mobile computer and communication review (Vol. 7, pp. 252–259). ACM
14.
Zurück zum Zitat Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2007). Spray and focus: Efficient mobility-assisted routing for heterogeneous and correlated mobility. In Fifth annual IEEE international conference on pervasive computing and communications workshops, 2007. PerCom Workshops’ 07 (pp. 79–85). IEEE. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2007). Spray and focus: Efficient mobility-assisted routing for heterogeneous and correlated mobility. In Fifth annual IEEE international conference on pervasive computing and communications workshops, 2007. PerCom Workshops’ 07 (pp. 79–85). IEEE.
15.
Zurück zum Zitat Wang, G., Wang, B., & Gao, Y. (2010). Dynamic spray and wait routing algorithm with quality of node in delay tolerant network. In 2010 International conference on communications and mobile computing (CMC) (Vol. 3, pp. 452–456). IEEE. Wang, G., Wang, B., & Gao, Y. (2010). Dynamic spray and wait routing algorithm with quality of node in delay tolerant network. In 2010 International conference on communications and mobile computing (CMC) (Vol. 3, pp. 452–456). IEEE.
16.
Zurück zum Zitat Zhang, J., & Luo, G. (2012). Adaptive spraying for routing in delay tolerant networks. Wireless Personal Communications, 66(1), 217–233.MathSciNetCrossRef Zhang, J., & Luo, G. (2012). Adaptive spraying for routing in delay tolerant networks. Wireless Personal Communications, 66(1), 217–233.MathSciNetCrossRef
17.
Zurück zum Zitat Fathima, G., & Wahidabanu, R. S. D. (2014). Prioritization of traffic for resource constrained delay tolerant networks. International Journal of Computers Communications & Control, 7(2), 252–263.CrossRef Fathima, G., & Wahidabanu, R. S. D. (2014). Prioritization of traffic for resource constrained delay tolerant networks. International Journal of Computers Communications & Control, 7(2), 252–263.CrossRef
18.
Zurück zum Zitat Prodhan, A. T., Das, R., Kabir, H., & Shoja, G. C. (2011). TTL based routing in opportunistic networks. Journal of Network and Computer Applications, 34(5), 1660–1670.CrossRef Prodhan, A. T., Das, R., Kabir, H., & Shoja, G. C. (2011). TTL based routing in opportunistic networks. Journal of Network and Computer Applications, 34(5), 1660–1670.CrossRef
19.
Zurück zum Zitat Lindgren, A., Doria, A., & Schelen, O. (2004). Probabilistic routing in intermittently connected networks. In Service assurance with partial and intermittent resources (pp. 239–254). Springer. Lindgren, A., Doria, A., & Schelen, O. (2004). Probabilistic routing in intermittently connected networks. In Service assurance with partial and intermittent resources (pp. 239–254). Springer.
20.
Zurück zum Zitat Lindgren, A., Doria, A., & Scheln, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20.CrossRef Lindgren, A., Doria, A., & Scheln, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20.CrossRef
21.
Zurück zum Zitat Jathar, R., & Gupta, A. (2010). Probabilistic routing using contact sequencing in delay tolerant networks. In 2010 Second international conference on communication systems and networks (COMSNETS) (pp. 1–10). IEEE. Jathar, R., & Gupta, A. (2010). Probabilistic routing using contact sequencing in delay tolerant networks. In 2010 Second international conference on communication systems and networks (COMSNETS) (pp. 1–10). IEEE.
22.
Zurück zum Zitat Sok, P., & Kim, K. (2013). Distance-based PRoPHET routing protocol in disruption tolerant network. In 2013 International conference on ICT convergence (ICTC) (pp. 159–164). IEEE. Sok, P., & Kim, K. (2013). Distance-based PRoPHET routing protocol in disruption tolerant network. In 2013 International conference on ICT convergence (ICTC) (pp. 159–164). IEEE.
23.
Zurück zum Zitat Medjiah, S., & Ahmed, T., (2011). Orion routing protocol for delay tolerant networks. In 2011 IEEE international conference on communications (ICC) (pp. 1–6). IEEE. Medjiah, S., & Ahmed, T., (2011). Orion routing protocol for delay tolerant networks. In 2011 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.
24.
Zurück zum Zitat Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.CrossRef Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.CrossRef
25.
Zurück zum Zitat Abdelkader, T., Naik, K., Nayak, A., Goel, N., & Srivastava, V. (2013). SGBR: A routing protocol for delay tolerant networks using social grouping. IEEE Transactions on Parallel and Distributed Systems, 24(12), 2472–2481.CrossRef Abdelkader, T., Naik, K., Nayak, A., Goel, N., & Srivastava, V. (2013). SGBR: A routing protocol for delay tolerant networks using social grouping. IEEE Transactions on Parallel and Distributed Systems, 24(12), 2472–2481.CrossRef
26.
Zurück zum Zitat Dang, H., & Hongyi, W. (2010). Clustering and cluster-based routing protocol for delay-tolerant mobile networks. IEEE Transactions on Wireless Communications, 9(6), 1874–1881.CrossRef Dang, H., & Hongyi, W. (2010). Clustering and cluster-based routing protocol for delay-tolerant mobile networks. IEEE Transactions on Wireless Communications, 9(6), 1874–1881.CrossRef
27.
Zurück zum Zitat Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A survey of social-based routing in delay tolerant networks: Positive and negative social effects. IEEE Communications Surveys and Tutorials, 15(1), 387–401.CrossRef Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A survey of social-based routing in delay tolerant networks: Positive and negative social effects. IEEE Communications Surveys and Tutorials, 15(1), 387–401.CrossRef
28.
Zurück zum Zitat Elwhishi, A., Pin-Han, H., Naik, K., & Shihada, B. (2013). Self-adaptive contention aware routing protocol for intermittently connected mobile networks. IEEE Transactions on Parallel and Distributed Systems., 24(7), 1422–1435.CrossRef Elwhishi, A., Pin-Han, H., Naik, K., & Shihada, B. (2013). Self-adaptive contention aware routing protocol for intermittently connected mobile networks. IEEE Transactions on Parallel and Distributed Systems., 24(7), 1422–1435.CrossRef
29.
Zurück zum Zitat Ayub, Q., Sulma Rashid, M., Zahid, S. M., & Abdullah, A. H. (2014). Contact quality based forwarding strategy for delay tolerant network. Journal of Network and Computer Applications, 39, 302–309.CrossRef Ayub, Q., Sulma Rashid, M., Zahid, S. M., & Abdullah, A. H. (2014). Contact quality based forwarding strategy for delay tolerant network. Journal of Network and Computer Applications, 39, 302–309.CrossRef
30.
Zurück zum Zitat Ayub, Q., Zahid, S. M., Rashid, S., & Abdullah, A. H. (2015). Threshold based best custodian routing protocol for delay tolerant network. International Journal of Computers Communications & Control, 10(3), 298–307.CrossRef Ayub, Q., Zahid, S. M., Rashid, S., & Abdullah, A. H. (2015). Threshold based best custodian routing protocol for delay tolerant network. International Journal of Computers Communications & Control, 10(3), 298–307.CrossRef
31.
Zurück zum Zitat Ayub, Q., Zahid, M. S. M., Rashid, S., & Abdullah, A. H. (2014). DF++: An adaptive buffer-aware probabilistic delegation forwarding protocol for Delay Tolerant Network. Cluster Computing, 17(4), 1465–1472.CrossRef Ayub, Q., Zahid, M. S. M., Rashid, S., & Abdullah, A. H. (2014). DF++: An adaptive buffer-aware probabilistic delegation forwarding protocol for Delay Tolerant Network. Cluster Computing, 17(4), 1465–1472.CrossRef
32.
Zurück zum Zitat Ayub, Q., Zahid, M. S. M., Rashid, S., & Abdullah, A. H. (2013). Threshold based locking routing strategy for delay tolerant network. Wireless Networks, 19(8), 2067–2078.CrossRef Ayub, Q., Zahid, M. S. M., Rashid, S., & Abdullah, A. H. (2013). Threshold based locking routing strategy for delay tolerant network. Wireless Networks, 19(8), 2067–2078.CrossRef
33.
Zurück zum Zitat Acer, U. G., Kalyanaraman, S., & Abouzeid, A. A. (2011). DTN routing using explicit and probabilistic routing table states. Wireless Networks, 17(5), 1305–1321.CrossRef Acer, U. G., Kalyanaraman, S., & Abouzeid, A. A. (2011). DTN routing using explicit and probabilistic routing table states. Wireless Networks, 17(5), 1305–1321.CrossRef
34.
Zurück zum Zitat Zhang, G., Han, T., Shan, W., Liu, C., & Shu, Y. (2012). A hybrid DTN-DSR routing protocol based on clustering. In 2012 8th international conference on wireless communications, networking and mobile computing (WiCOM) (pp. 1–4). IEEE. Zhang, G., Han, T., Shan, W., Liu, C., & Shu, Y. (2012). A hybrid DTN-DSR routing protocol based on clustering. In 2012 8th international conference on wireless communications, networking and mobile computing (WiCOM) (pp. 1–4). IEEE.
35.
Zurück zum Zitat Burgess, J., Gallagher, B., Jensen, D., & Levine, B. N. (2006). MaxProp: Routing for vehicle-based disruption-tolerant networks. In Infocom (Vol. 6, pp. 1–11). Burgess, J., Gallagher, B., Jensen, D., & Levine, B. N. (2006). MaxProp: Routing for vehicle-based disruption-tolerant networks. In Infocom (Vol. 6, pp. 1–11).
Metadaten
Titel
Energy Efficient Inactive Node Detection Based Routing Protocol for Delay Tolerant Network
verfasst von
Qaisar Ayub
Sulma Rashid
Publikationsdatum
11.08.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07712-5

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt