Skip to main content
Erschienen in: Wireless Personal Communications 2/2021

18.02.2021

Energy Efficient Intra Cluster Gateway Optimal Placement in Wireless Sensor Network

verfasst von: Y. M. Raghavendra, U. B. Mahadevaswamy

Erschienen in: Wireless Personal Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless Sensor Networks (WSNs) is composed of self-organizing and tiny nodes that can process and transmit the data over wireless medium. The energy conservation and effective energy utilization is a significant problem to be considered in WSN. Many previous cluster based solutions relied on routing protocols, considered the relationship between sensor nodes and cluster head. It might lead to the probability of nodes that are left without being a member of any of the clusters called as residual nodes. These residual nodes might decrease the network's lifetime. The resource-constrained sensor nodes have been included in specific networks for exploring their surroundings and processing through one or multiple gateways to send the gathered data. Gateways in the network could be done in a controlled manner to communicate between sensors of WSN that can be utilized for several applications. For improving the lifetime of WSN, several sinks are deployed optimally which has been considered as one of the efficient energy techniques. This work presents the latest structure which would comprise the mechanism of effective clustering along with Intra Cluster Gateway (IC-GW). IC-GW depends on Particle Swarm Optimization with Genetic Algorithm (PSO-GA) termed as ICGW-PSOGA for distance-communication and optimal SINK placement in WSNs. This Intra Gateway would gather the data from the heads of cluster and would be delivering to the SINK. The PSO-GA relied estimation of location algorithm has been initiated for finding the most excellent arrangement for the Gateway and SINK relied on the structure of the network. This algorithm has been extensively examined on several scenarios with the variation in the simulation duration; numerous sensor nodes and range of communication. The simulation results are promising and the obtained results are compared and validated with the earlier mechanisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Seinstra, F., et al. (2016). A medium-scale distributed system for computer science research: Infrastructure for the long term. Computer, 49(5), 54–63.CrossRef Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Seinstra, F., et al. (2016). A medium-scale distributed system for computer science research: Infrastructure for the long term. Computer, 49(5), 54–63.CrossRef
2.
Zurück zum Zitat Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRef Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRef
3.
Zurück zum Zitat Raghavendra, Y. M., & Mahadevaswamy, U. B. (2020). Energy efficient routing in wireless sensor network based on composite fuzzy methods. Wireless Personal Communications, 114, 2569–2590.CrossRef Raghavendra, Y. M., & Mahadevaswamy, U. B. (2020). Energy efficient routing in wireless sensor network based on composite fuzzy methods. Wireless Personal Communications, 114, 2569–2590.CrossRef
4.
Zurück zum Zitat Yim, Y., Kim, K. H., Aldwairi, M., & Kim, K.-I. (2017). Energy-efficient region shift scheme to support mobile sink group in wireless sensor networks. Sensors, 18(1), 90.CrossRef Yim, Y., Kim, K. H., Aldwairi, M., & Kim, K.-I. (2017). Energy-efficient region shift scheme to support mobile sink group in wireless sensor networks. Sensors, 18(1), 90.CrossRef
5.
Zurück zum Zitat Khan, A. W., Abdullah, A. H., Razzaque, M. A., & Bangash, J. I. (2015). VGDRA: A virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE Sensors Journal, 15(1), 526–534.CrossRef Khan, A. W., Abdullah, A. H., Razzaque, M. A., & Bangash, J. I. (2015). VGDRA: A virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE Sensors Journal, 15(1), 526–534.CrossRef
6.
Zurück zum Zitat Tunca, C., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Ring routing: An energy-efficient routing protocol for wireless sensor networks with a mobile sink. IEEE Transactions on Mobile Computing, 14(9), 1947–1960.CrossRef Tunca, C., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Ring routing: An energy-efficient routing protocol for wireless sensor networks with a mobile sink. IEEE Transactions on Mobile Computing, 14(9), 1947–1960.CrossRef
7.
Zurück zum Zitat Zhao, H., GuoS, WangX., & Wang, F. (2015). Energy-efficient topology control algorithm for maximizing network lifetime in wireless sensor networks with mobile sink. Applied Soft Computing, 34, 539–550.CrossRef Zhao, H., GuoS, WangX., & Wang, F. (2015). Energy-efficient topology control algorithm for maximizing network lifetime in wireless sensor networks with mobile sink. Applied Soft Computing, 34, 539–550.CrossRef
8.
Zurück zum Zitat Raghavendra Y. M., & Dr. Mahadevaswamy, U. B. (2020). Energy-efficient routing in wireless sensor network based on mobile sink guided by stochastic hill climbing. International Journal of Electrical and Computer Engineering, 10(6), 5965–5973. Raghavendra Y. M., & Dr. Mahadevaswamy, U. B. (2020). Energy-efficient routing in wireless sensor network based on mobile sink guided by stochastic hill climbing. International Journal of Electrical and Computer Engineering, 10(6), 5965–5973.
9.
Zurück zum Zitat Hu, Y.-F., Ding, Y.-S., Ren, L.-H., Hao, K.-R., & Han, H. (2015). An endocrine cooperative particle swarm optimization algorithm for routing recovery problem of wireless sensor networks with multiple mobile sinks. Information Sciences, 300, 100–113.CrossRef Hu, Y.-F., Ding, Y.-S., Ren, L.-H., Hao, K.-R., & Han, H. (2015). An endocrine cooperative particle swarm optimization algorithm for routing recovery problem of wireless sensor networks with multiple mobile sinks. Information Sciences, 300, 100–113.CrossRef
10.
Zurück zum Zitat Shah, I. K., Maity, T., & Doha, Y. S. (2020). Weight based approach for optimal position of base station in wireless sensor network. In 2020 international conference on inventive computation technologies (ICICT) (pp. 734–738). IEEE. Shah, I. K., Maity, T., & Doha, Y. S. (2020). Weight based approach for optimal position of base station in wireless sensor network. In 2020 international conference on inventive computation technologies (ICICT) (pp. 734–738). IEEE.
11.
Zurück zum Zitat Bachelor, R., & Shrimankar, D. (2018). EEHCCP: An energy-efficient hybrid clustering communication protocol for wireless sensor network. In Y. Zhou & T. Kunz (Eds.), Ad hoc networks (pp. 199–207). Cham: Springer. Bachelor, R., & Shrimankar, D. (2018). EEHCCP: An energy-efficient hybrid clustering communication protocol for wireless sensor network. In Y. Zhou & T. Kunz (Eds.), Ad hoc networks (pp. 199–207). Cham: Springer.
12.
Zurück zum Zitat Salehi Panahi, M., & Abbaszadeh, M. (2018). Proposing a method to solve the energy hole problem in wireless sensor networks. Alexandria Engineering Journal, 57(3), 1585–1590.CrossRef Salehi Panahi, M., & Abbaszadeh, M. (2018). Proposing a method to solve the energy hole problem in wireless sensor networks. Alexandria Engineering Journal, 57(3), 1585–1590.CrossRef
13.
Zurück zum Zitat Mohajerani, A., & Gharavian, D. (2016). An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks, 22(8), 2637–2647.CrossRef Mohajerani, A., & Gharavian, D. (2016). An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks, 22(8), 2637–2647.CrossRef
14.
Zurück zum Zitat Lohani, D., & Varma, S. (2016). Energy efficient data aggregation in mobile agent based wireless sensor network. Wireless Personal Communications, 89(4), 1165–1176.CrossRef Lohani, D., & Varma, S. (2016). Energy efficient data aggregation in mobile agent based wireless sensor network. Wireless Personal Communications, 89(4), 1165–1176.CrossRef
15.
Zurück zum Zitat Kong, L., Pan, J. S., Snášel, V., Tsai, P. W., & Sung, T. W. (2018). An energy-aware routing protocol for wireless sensor network based on genetic algorithm. Telecommunication Systems, 67(3), 451–463.CrossRef Kong, L., Pan, J. S., Snášel, V., Tsai, P. W., & Sung, T. W. (2018). An energy-aware routing protocol for wireless sensor network based on genetic algorithm. Telecommunication Systems, 67(3), 451–463.CrossRef
17.
Zurück zum Zitat Cheng, D., Xun, Y., Zhou, T., & Li, W. (2011). An energy-aware ant colony routing algorithms for the routing of wireless sensor networks. In ICICIS 2011, part I, CCIS-134 (pp. 395–401). Heidelberg: Springer. Cheng, D., Xun, Y., Zhou, T., & Li, W. (2011). An energy-aware ant colony routing algorithms for the routing of wireless sensor networks. In ICICIS 2011, part I, CCIS-134 (pp. 395–401). Heidelberg: Springer.
18.
Zurück zum Zitat Wang, X., Li, Q., Xiong, N., & Pan, Y. (2008). Ant colony optimization-based location-aware routing for wireless sensor networks. In Y. Li, D. T. Huynh, S. K. Das, & D. Z. Du (Eds.), WASA 2008, LNCS (Vol. 5258, pp. 109–120). Heidelberg: Springer. Wang, X., Li, Q., Xiong, N., & Pan, Y. (2008). Ant colony optimization-based location-aware routing for wireless sensor networks. In Y. Li, D. T. Huynh, S. K. Das, & D. Z. Du (Eds.), WASA 2008, LNCS (Vol. 5258, pp. 109–120). Heidelberg: Springer.
19.
Zurück zum Zitat Shih, H.-C., Chu, S.-C., Roddick, J. F., Hung, M.-H., & Pan, J.-S. (2010). Power reduction of wireless sensor networks using ant colony optimization. In 2010 international conference on computational aspects of social networks (pp. 464–467). IEEE Shih, H.-C., Chu, S.-C., Roddick, J. F., Hung, M.-H., & Pan, J.-S. (2010). Power reduction of wireless sensor networks using ant colony optimization. In 2010 international conference on computational aspects of social networks (pp. 464–467). IEEE
20.
Zurück zum Zitat Zhong, Z., Tian, Z., Li, Z., &Xu, P. (2008). An ant colony optimization competition routing algorithm for WSN. In 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008 (pp. 1–4). IEEE. Zhong, Z., Tian, Z., Li, Z., &Xu, P. (2008). An ant colony optimization competition routing algorithm for WSN. In 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008 (pp. 1–4). IEEE.
21.
Zurück zum Zitat Amgoth, T., & Jana, P. K. (2014). An energy-aware routing algorithm for wireless sensor networks. Computers & Electrical Engineering, 41, 357–367.CrossRef Amgoth, T., & Jana, P. K. (2014). An energy-aware routing algorithm for wireless sensor networks. Computers & Electrical Engineering, 41, 357–367.CrossRef
22.
Zurück zum Zitat Kassotakis, I. E., Markaki, M. E., & Vasilakos, A. V. (2000). A hybrid genetic approach for channel reuse in multiple access telecommunication networks. IEEE Journal on Selected Areas in Communications, 18(2), 234–243.CrossRef Kassotakis, I. E., Markaki, M. E., & Vasilakos, A. V. (2000). A hybrid genetic approach for channel reuse in multiple access telecommunication networks. IEEE Journal on Selected Areas in Communications, 18(2), 234–243.CrossRef
23.
Zurück zum Zitat Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef
24.
Zurück zum Zitat Lingaraj, K., Biradar, R. V., & Patil, V. C. (2017). OMMIP: An optimized multiple mobile agents itinerary planning for wireless sensor networks. Journal of Information and Optimization Sciences, 38(6), 1067–1076.MathSciNetCrossRef Lingaraj, K., Biradar, R. V., & Patil, V. C. (2017). OMMIP: An optimized multiple mobile agents itinerary planning for wireless sensor networks. Journal of Information and Optimization Sciences, 38(6), 1067–1076.MathSciNetCrossRef
25.
Zurück zum Zitat Lohani, D., & Varma, S. (2016). Energy-efficient data aggregation in a mobile agent-based wireless sensor network. Wireless Personal Communications, 89(4), 1165–1176.CrossRef Lohani, D., & Varma, S. (2016). Energy-efficient data aggregation in a mobile agent-based wireless sensor network. Wireless Personal Communications, 89(4), 1165–1176.CrossRef
26.
Zurück zum Zitat Wu, Q., Rao, N. S. V., Barhen, J., SitharamaIyengar, S., Vaishnavi, V. K., Qi, H., & Chakrabarty, K. (2004). On computing mobile agent routes for data fusion in distributed sensor networks. IEEE Transactions on Knowledge and Data Engineering, 16(6), 740–753.CrossRef Wu, Q., Rao, N. S. V., Barhen, J., SitharamaIyengar, S., Vaishnavi, V. K., Qi, H., & Chakrabarty, K. (2004). On computing mobile agent routes for data fusion in distributed sensor networks. IEEE Transactions on Knowledge and Data Engineering, 16(6), 740–753.CrossRef
27.
Zurück zum Zitat Chen, M., Leung, V., Mao, S., Kwon, T., & Li, M. (2009). Energy-efficient itinerary planning for mobile agents in wireless sensor networks. In Proceedings of the IEEE international conference on communications (ICC), Dresden, Germany (pp. 1–5). Chen, M., Leung, V., Mao, S., Kwon, T., & Li, M. (2009). Energy-efficient itinerary planning for mobile agents in wireless sensor networks. In Proceedings of the IEEE international conference on communications (ICC), Dresden, Germany (pp. 1–5).
28.
Zurück zum Zitat Yu, J., Qi, Y., Wang, G., & Gu, X. (2012). A cluster-based routing protocol for wireless sensor networks with non-uniform node distribution. AEU-International Journal of Electronics and Communications, 66(1), 54–61.CrossRef Yu, J., Qi, Y., Wang, G., & Gu, X. (2012). A cluster-based routing protocol for wireless sensor networks with non-uniform node distribution. AEU-International Journal of Electronics and Communications, 66(1), 54–61.CrossRef
30.
Zurück zum Zitat Yu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy-aware routing: A recursive data dissemination protocol for wireless sensor networks. Yu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy-aware routing: A recursive data dissemination protocol for wireless sensor networks.
31.
Zurück zum Zitat Tabibi, S., & Ghaffari, A. (2018). Energy-efficient routing mechanism for Mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104, 199–216.CrossRef Tabibi, S., & Ghaffari, A. (2018). Energy-efficient routing mechanism for Mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wireless Personal Communications, 104, 199–216.CrossRef
32.
Zurück zum Zitat Kumar, P., Amgoth, T., & Annavarapu, C. S. R. (2018). ACO-based mobile sink path determination for wireless sensor networks under non-uniform data constraints. Applied Soft Computing, 69, 528–540.CrossRef Kumar, P., Amgoth, T., & Annavarapu, C. S. R. (2018). ACO-based mobile sink path determination for wireless sensor networks under non-uniform data constraints. Applied Soft Computing, 69, 528–540.CrossRef
Metadaten
Titel
Energy Efficient Intra Cluster Gateway Optimal Placement in Wireless Sensor Network
verfasst von
Y. M. Raghavendra
U. B. Mahadevaswamy
Publikationsdatum
18.02.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08247-z

Weitere Artikel der Ausgabe 2/2021

Wireless Personal Communications 2/2021 Zur Ausgabe

Neuer Inhalt