Skip to main content
Erschienen in: Wireless Networks 1/2017

15.12.2015

Energy harvesting and battery power based routing in wireless sensor networks

verfasst von: Mohammad Hossein Anisi, Gaddafi Abdul-Salaam, Mohd. Yamani Idna Idris, Ainuddin Wahid Abdul Wahab, Ismail Ahmedy

Erschienen in: Wireless Networks | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) are a collection of several small and inexpensive battery-powered nodes, commonly used to monitor regions of interests and to collect data from the environment. Several issues exist in routing data packets through WSN, but the most crucial problem is energy. There are a number of routing approaches in WSNs that address the issue of energy by the use of different energy-efficient methods. This paper, presents a brief summary of routing and related issues in WSNs. The most recent energy-efficient data routing approaches are reviewed and categorized based on their aims and methodologies. The traditional battery based energy sources for sensor nodes and the conventional energy harvesting mechanisms that are widely used to in energy replenishment in WSN are reviewed. Then a new emerging energy harvesting technology that uses piezoelectric nanogenerators to supply power to nanosensor; the type of sensors that cannot be charged by conventional energy harvesters are explained. The energy consumption reduction routing strategies in WSN are also discussed. Furthermore, comparisons of the variety of energy harvesting mechanisms and battery power routing protocols that have been discussed are presented, eliciting their advantages, disadvantages and their specific feature. Finally, a highlight of the challenges and future works in this research domain is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263–270.CrossRef Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263–270.CrossRef
2.
Zurück zum Zitat Abdul-Salaam, G., Abdullah, A. H., Anisi, M. H., Gani, A., & Alelaiwi, A. (2015). A comparative analysis of energy conservation approaches in hybrid wireless sensor networks data collection protocols. Telecommunication Systems, 1–21. doi: 10.1007/s11235-015-0092-8. Abdul-Salaam, G., Abdullah, A. H., Anisi, M. H., Gani, A., & Alelaiwi, A. (2015). A comparative analysis of energy conservation approaches in hybrid wireless sensor networks data collection protocols. Telecommunication Systems, 1–21. doi: 10.​1007/​s11235-015-0092-8.
3.
Zurück zum Zitat Acampora, G., Gaeta, M., Loia, V., & Vasilakos, A. V. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 5(2), 8. Acampora, G., Gaeta, M., Loia, V., & Vasilakos, A. V. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 5(2), 8.
4.
Zurück zum Zitat Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.CrossRef Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.CrossRef
5.
Zurück zum Zitat Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3–19.CrossRef Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3–19.CrossRef
6.
Zurück zum Zitat Al-Karaki, J. N., Ul-Mustafa, R., & Kamal, A. E. (2009). Data aggregation and routing in wireless sensor networks: Optimal and heuristic algorithms. Computer Networks, 53(7), 945–960.MATHCrossRef Al-Karaki, J. N., Ul-Mustafa, R., & Kamal, A. E. (2009). Data aggregation and routing in wireless sensor networks: Optimal and heuristic algorithms. Computer Networks, 53(7), 945–960.MATHCrossRef
7.
Zurück zum Zitat Allameh, S., Akogwu, O., Collinson, M., Thomas, J., & Soboyejo, W. (2007). Piezoelectric generators for biomedical and dental applications: Effects of cyclic loading. Journal of Materials Science Materials in Medicine, 18(1), 39–45.CrossRef Allameh, S., Akogwu, O., Collinson, M., Thomas, J., & Soboyejo, W. (2007). Piezoelectric generators for biomedical and dental applications: Effects of cyclic loading. Journal of Materials Science Materials in Medicine, 18(1), 39–45.CrossRef
8.
Zurück zum Zitat Alsalih, W., Hassanein, H., & Akl, S. (2010). Placement of multiple mobile data collectors in wireless sensor networks. Ad Hoc Networks, 8(4), 378–390.CrossRef Alsalih, W., Hassanein, H., & Akl, S. (2010). Placement of multiple mobile data collectors in wireless sensor networks. Ad Hoc Networks, 8(4), 378–390.CrossRef
9.
Zurück zum Zitat Alwan, H., & Agarwal, A. (2009). A survey on fault tolerant routing techniques in wireless sensor networks. In Third international conference on sensor technologies and applications (SENSORCOMM ‘09) (pp. 366–371). Alwan, H., & Agarwal, A. (2009). A survey on fault tolerant routing techniques in wireless sensor networks. In Third international conference on sensor technologies and applications (SENSORCOMM ‘09) (pp. 366–371).
10.
Zurück zum Zitat Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4), 408–421.CrossRef Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4), 408–421.CrossRef
11.
Zurück zum Zitat Angelopoulos, C. M., & Nikoletseas, S. (2011). Aggregated mobility-based topology inference for fast sensor data collection. Computer Communications, 34(13), 1570–1579.CrossRef Angelopoulos, C. M., & Nikoletseas, S. (2011). Aggregated mobility-based topology inference for fast sensor data collection. Computer Communications, 34(13), 1570–1579.CrossRef
12.
Zurück zum Zitat Anisi, M. H., Abdullah, A. H., Coulibaly, Y., & Razak, S. A. (2013). EDR: Efficient data routing in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 12(1), 46–55.CrossRef Anisi, M. H., Abdullah, A. H., Coulibaly, Y., & Razak, S. A. (2013). EDR: Efficient data routing in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 12(1), 46–55.CrossRef
13.
Zurück zum Zitat Anisi, M. H., Abdul-Salaam, G., & Abdullah, A. H. (2015). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture, 16(2), 216–238.CrossRef Anisi, M. H., Abdul-Salaam, G., & Abdullah, A. H. (2015). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture, 16(2), 216–238.CrossRef
14.
Zurück zum Zitat Asim, M., Mokhtar, H., & Merabti, M. (2009). A cellular approach to fault detection and recovery in wireless sensor networks. In Third international conference on sensor technologies and applications (SENSORCOMM’09) (pp. 352–357). Asim, M., Mokhtar, H., & Merabti, M. (2009). A cellular approach to fault detection and recovery in wireless sensor networks. In Third international conference on sensor technologies and applications (SENSORCOMM’09) (pp. 352–357).
15.
Zurück zum Zitat Bangash, J. I., Abdullah, A. H., Anisi, M. H., & Khan, A. W. (2014). A survey of routing protocols in wireless body sensor networks. Sensors, 14(1), 1322–1357.CrossRef Bangash, J. I., Abdullah, A. H., Anisi, M. H., & Khan, A. W. (2014). A survey of routing protocols in wireless body sensor networks. Sensors, 14(1), 1322–1357.CrossRef
16.
Zurück zum Zitat Banimelhem, O., & Khasawneh, S. (2012). GMCAR: Grid-based multipath with congestion avoidance routing protocol in wireless sensor networks. Ad Hoc Networks, 10(7), 1346–1361.CrossRef Banimelhem, O., & Khasawneh, S. (2012). GMCAR: Grid-based multipath with congestion avoidance routing protocol in wireless sensor networks. Ad Hoc Networks, 10(7), 1346–1361.CrossRef
17.
Zurück zum Zitat Bari, A., Jaekel, A., Jiang, J., & Xu, Y. (2012). Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements. Computer Communications, 35(3), 320–333.CrossRef Bari, A., Jaekel, A., Jiang, J., & Xu, Y. (2012). Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements. Computer Communications, 35(3), 320–333.CrossRef
18.
Zurück zum Zitat Ben-Othman, J., & Yahya, B. (2010). Energy efficient and QoS based routing protocol for wireless sensor networks. Journal of Parallel and Distributed Computing, 70(8), 849–857.MATHCrossRef Ben-Othman, J., & Yahya, B. (2010). Energy efficient and QoS based routing protocol for wireless sensor networks. Journal of Parallel and Distributed Computing, 70(8), 849–857.MATHCrossRef
19.
Zurück zum Zitat Benini, L., Farella, E., & Guiducci, C. (2006). Wireless sensor networks: Enabling technology for ambient intelligence. Microelectronics Journal, 37(12), 1639–1649.CrossRef Benini, L., Farella, E., & Guiducci, C. (2006). Wireless sensor networks: Enabling technology for ambient intelligence. Microelectronics Journal, 37(12), 1639–1649.CrossRef
20.
Zurück zum Zitat Bhattacharyya, D., Kim, T.-H., & Pal, S. (2010). A comparative study of wireless sensor networks and their routing protocols. Sensors, 10(12), 10506–10523.CrossRef Bhattacharyya, D., Kim, T.-H., & Pal, S. (2010). A comparative study of wireless sensor networks and their routing protocols. Sensors, 10(12), 10506–10523.CrossRef
21.
Zurück zum Zitat Bhuiyan, M., Wang, G., & Vasilakos, A. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetCrossRef Bhuiyan, M., Wang, G., & Vasilakos, A. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetCrossRef
22.
Zurück zum Zitat Biswas, S., & Morris, R. (2005). ExOR: Opportunistic multi-hop routing for wireless networks. ACM SIGCOMM Computer Communication Review, 35(4), 133–144.CrossRef Biswas, S., & Morris, R. (2005). ExOR: Opportunistic multi-hop routing for wireless networks. ACM SIGCOMM Computer Communication Review, 35(4), 133–144.CrossRef
23.
Zurück zum Zitat Bo, W., Han-Ying, H., & Wen, F. (2008). An improved leach protocol for data gathering and aggregation in wireless sensor networks. In International conference on computer and electrical engineering (ICCEE 2008) (pp. 398–401). Bo, W., Han-Ying, H., & Wen, F. (2008). An improved leach protocol for data gathering and aggregation in wireless sensor networks. In International conference on computer and electrical engineering (ICCEE 2008) (pp. 398–401).
24.
Zurück zum Zitat Boukerche, A., Turgut, B., Aydin, N., Ahmad, M. Z., Bölöni, L., & Turgut, D. (2011). Routing protocols in ad hoc networks: A survey. Computer Networks, 55(13), 3032–3080.CrossRef Boukerche, A., Turgut, B., Aydin, N., Ahmad, M. Z., Bölöni, L., & Turgut, D. (2011). Routing protocols in ad hoc networks: A survey. Computer Networks, 55(13), 3032–3080.CrossRef
25.
Zurück zum Zitat Bowen, C., Kim, H., Weaver, P., & Dunn, S. (2014). Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science, 7(1), 25–44.CrossRef Bowen, C., Kim, H., Weaver, P., & Dunn, S. (2014). Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science, 7(1), 25–44.CrossRef
26.
Zurück zum Zitat Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+ dilation in networks via” quality of routing&# X201D; games. IEEE Transactions on Computers, 61(9), 1270–1283.MathSciNetCrossRef Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+ dilation in networks via” quality of routing&# X201D; games. IEEE Transactions on Computers, 61(9), 1270–1283.MathSciNetCrossRef
27.
Zurück zum Zitat Byun, J., & Park, S. (2011). Development of a self-adapting intelligent system for building energy saving and context-aware smart services. IEEE Transactions on Consumer Electronics, 57(1), 90–98.CrossRef Byun, J., & Park, S. (2011). Development of a self-adapting intelligent system for building energy saving and context-aware smart services. IEEE Transactions on Consumer Electronics, 57(1), 90–98.CrossRef
28.
Zurück zum Zitat Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., De Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors, 14(3), 4755–4790.CrossRef Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., De Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors, 14(3), 4755–4790.CrossRef
29.
Zurück zum Zitat Camillò, A., Nati, M., Petrioli, C., Rossi, M., & Zorzi, M. (2013). IRIS: Integrated data gathering and interest dissemination system for wireless sensor networks. Ad Hoc Networks, 11(2), 654–671.CrossRef Camillò, A., Nati, M., Petrioli, C., Rossi, M., & Zorzi, M. (2013). IRIS: Integrated data gathering and interest dissemination system for wireless sensor networks. Ad Hoc Networks, 11(2), 654–671.CrossRef
30.
Zurück zum Zitat Cano, C., Bellalta, B., Sfairopoulou, A., & Oliver, M. (2011). Low energy operation in WSNS: A survey of preamble sampling MAC protocols. Computer Networks, 55(15), 3351–3363.CrossRef Cano, C., Bellalta, B., Sfairopoulou, A., & Oliver, M. (2011). Low energy operation in WSNS: A survey of preamble sampling MAC protocols. Computer Networks, 55(15), 3351–3363.CrossRef
31.
Zurück zum Zitat Cao, X., Chen, J., Gao, C., & Sun, Y. (2009). An optimal control method for applications using wireless sensor/actuator networks. Computers & Electrical Engineering, 35(5), 748–756.MATHCrossRef Cao, X., Chen, J., Gao, C., & Sun, Y. (2009). An optimal control method for applications using wireless sensor/actuator networks. Computers & Electrical Engineering, 35(5), 748–756.MATHCrossRef
32.
Zurück zum Zitat Challal, Y., Ouadjaout, A., Lasla, N., Bagaa, M., & Hadjidj, A. (2011). Secure and efficient disjoint multipath construction for fault tolerant routing in wireless sensor networks. Journal of Network and Computer Applications, 34(4), 1380–1397.CrossRef Challal, Y., Ouadjaout, A., Lasla, N., Bagaa, M., & Hadjidj, A. (2011). Secure and efficient disjoint multipath construction for fault tolerant routing in wireless sensor networks. Journal of Network and Computer Applications, 34(4), 1380–1397.CrossRef
33.
Zurück zum Zitat Chatterjea, S., Nieberg, T., Meratnia, N., & Havinga, P. (2008). A distributed and self-organizing scheduling algorithm for energy-efficient data aggregation in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 4(4), 20.CrossRef Chatterjea, S., Nieberg, T., Meratnia, N., & Havinga, P. (2008). A distributed and self-organizing scheduling algorithm for energy-efficient data aggregation in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 4(4), 20.CrossRef
34.
Zurück zum Zitat Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2014). A simple asymptotically optimal joint energy allocation and routing scheme in rechargeable sensor networks. IEEE/ACM Transactions on Networking (TON), 22(4), 1325–1336.CrossRef Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2014). A simple asymptotically optimal joint energy allocation and routing scheme in rechargeable sensor networks. IEEE/ACM Transactions on Networking (TON), 22(4), 1325–1336.CrossRef
35.
Zurück zum Zitat Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, 1–9.CrossRef Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, 1–9.CrossRef
36.
Zurück zum Zitat Chipara, O., He, Z., Xing, G., Chen, Q., Wang, X., Lu, C., et al. (2006). Real-time power-aware routing in sensor networks. In 14th IEEE international workshop on quality of service (IWQoS 2006) (pp. 83–92). Chipara, O., He, Z., Xing, G., Chen, Q., Wang, X., Lu, C., et al. (2006). Real-time power-aware routing in sensor networks. In 14th IEEE international workshop on quality of service (IWQoS 2006) (pp. 83–92).
37.
Zurück zum Zitat Choe, H. J., Ghosh, P., & Das, S. K. (2010). QoS-aware data reporting control in cluster-based wireless sensor networks. Computer Communications, 33(11), 1244–1254.CrossRef Choe, H. J., Ghosh, P., & Das, S. K. (2010). QoS-aware data reporting control in cluster-based wireless sensor networks. Computer Communications, 33(11), 1244–1254.CrossRef
38.
Zurück zum Zitat Clementi, A. E., Penna, P., & Silvestri, R. (2004). On the power assignment problem in radio networks. Mobile Networks and Applications, 9(2), 125–140.MATHCrossRef Clementi, A. E., Penna, P., & Silvestri, R. (2004). On the power assignment problem in radio networks. Mobile Networks and Applications, 9(2), 125–140.MATHCrossRef
39.
Zurück zum Zitat Considine, J., Li, F., Kollios, G., & Byers, J. (2004). Approximate aggregation techniques for sensor databases. In Proceedings of the 20th international conference on data engineering (pp. 449–460). Considine, J., Li, F., Kollios, G., & Byers, J. (2004). Approximate aggregation techniques for sensor databases. In Proceedings of the 20th international conference on data engineering (pp. 449–460).
40.
Zurück zum Zitat Das, S. M., Pucha, H., & Hu, Y. C. (2008). Distributed hashing for scalable multicast in wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 19(3), 347–362.CrossRef Das, S. M., Pucha, H., & Hu, Y. C. (2008). Distributed hashing for scalable multicast in wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 19(3), 347–362.CrossRef
41.
Zurück zum Zitat Díaz-Anadón, M. O., & Leung, K. K. (2011). TDMA scheduling for event-triggered data aggregation in irregular wireless sensor networks. Computer Communications, 34(17), 2072–2081.CrossRef Díaz-Anadón, M. O., & Leung, K. K. (2011). TDMA scheduling for event-triggered data aggregation in irregular wireless sensor networks. Computer Communications, 34(17), 2072–2081.CrossRef
42.
Zurück zum Zitat Dimokas, N., Katsaros, D., & Manolopoulos, Y. (2010). Energy-efficient distributed clustering in wireless sensor networks. Journal of Parallel and Distributed Computing, 70(4), 371–383.MATHCrossRef Dimokas, N., Katsaros, D., & Manolopoulos, Y. (2010). Energy-efficient distributed clustering in wireless sensor networks. Journal of Parallel and Distributed Computing, 70(4), 371–383.MATHCrossRef
43.
Zurück zum Zitat Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNS. ACM SIGCOMM Computer Communication Review, 41(4), 405–406. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNS. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.
44.
Zurück zum Zitat Ferng, H.-W., Tendean, R., & Kurniawan, A. (2012). Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure. Wireless Personal Communications, 65(2), 347–367.CrossRef Ferng, H.-W., Tendean, R., & Kurniawan, A. (2012). Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure. Wireless Personal Communications, 65(2), 347–367.CrossRef
45.
Zurück zum Zitat Förster, A., & Murphy, A. L. (2010). A critical survey and guide to evaluating WSN routing protocols. In The first international workshop on networks of cooperating objects (CONET), Stockholm. Förster, A., & Murphy, A. L. (2010). A critical survey and guide to evaluating WSN routing protocols. In The first international workshop on networks of cooperating objects (CONET), Stockholm.
46.
Zurück zum Zitat Gagarin, A., Hussain, S., & Yang, L. T. (2010). Distributed hierarchical search for balanced energy consumption routing spanning trees in wireless sensor networks. Journal of Parallel and Distributed Computing, 70(9), 975–982.MATHCrossRef Gagarin, A., Hussain, S., & Yang, L. T. (2010). Distributed hierarchical search for balanced energy consumption routing spanning trees in wireless sensor networks. Journal of Parallel and Distributed Computing, 70(9), 975–982.MATHCrossRef
47.
Zurück zum Zitat Guo, S., Wang, C., & Yang, Y. (2014). Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2836–2852.CrossRef Guo, S., Wang, C., & Yang, Y. (2014). Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2836–2852.CrossRef
48.
Zurück zum Zitat Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRef Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRef
49.
Zurück zum Zitat Han, S.-W., Jeong, I.-S., & Kang, S.-H. (2013). Low latency and energy efficient routing tree for wireless sensor networks with multiple mobile sinks. Journal of Network and Computer Applications, 36(1), 156–166.CrossRef Han, S.-W., Jeong, I.-S., & Kang, S.-H. (2013). Low latency and energy efficient routing tree for wireless sensor networks with multiple mobile sinks. Journal of Network and Computer Applications, 36(1), 156–166.CrossRef
50.
Zurück zum Zitat Hassanein, H., & Luo, J. (2006). Reliable energy aware routing in wireless sensor networks. In 2nd IEEE workshop on dependability and security in sensor networks and systems (DSSNS 2006) (pp. 54–64). Hassanein, H., & Luo, J. (2006). Reliable energy aware routing in wireless sensor networks. In 2nd IEEE workshop on dependability and security in sensor networks and systems (DSSNS 2006) (pp. 54–64).
51.
Zurück zum Zitat He, S., Chen, J., Sun, Y., Yau, D. K., & Yip, N. K. (2010). On optimal information capture by energy-constrained mobile sensors. IEEE Transactions on Vehicular Technology, 59(5), 2472–2484.CrossRef He, S., Chen, J., Sun, Y., Yau, D. K., & Yip, N. K. (2010). On optimal information capture by energy-constrained mobile sensors. IEEE Transactions on Vehicular Technology, 59(5), 2472–2484.CrossRef
52.
Zurück zum Zitat Heinzelman, W. R., Kulik, J., & Balakrishnan, H. (1999). Adaptive protocols for information dissemination in wireless sensor networks. In Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking (pp. 174–185). Heinzelman, W. R., Kulik, J., & Balakrishnan, H. (1999). Adaptive protocols for information dissemination in wireless sensor networks. In Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking (pp. 174–185).
53.
Zurück zum Zitat Hou, J., & Gao, Y. (2010). Greenhouse wireless sensor network monitoring system design based on solar energy. In International conference on challenges in environmental science and computer engineering (CESCE) (pp. 475–479). Hou, J., & Gao, Y. (2010). Greenhouse wireless sensor network monitoring system design based on solar energy. In International conference on challenges in environmental science and computer engineering (CESCE) (pp. 475–479).
54.
Zurück zum Zitat Huang, H., Hu, G., Yu, F., & Zhang, Z. (2011). Energy-aware interference-sensitive geographic routing in wireless sensor networks. IET Communications, 5(18), 2692–2702.MathSciNetCrossRef Huang, H., Hu, G., Yu, F., & Zhang, Z. (2011). Energy-aware interference-sensitive geographic routing in wireless sensor networks. IET Communications, 5(18), 2692–2702.MathSciNetCrossRef
55.
Zurück zum Zitat Huang, P., Wang, C., & Xiao, L. (2012). Improving end-to-end routing performance of greedy forwarding in sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 556–563.CrossRef Huang, P., Wang, C., & Xiao, L. (2012). Improving end-to-end routing performance of greedy forwarding in sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 556–563.CrossRef
56.
Zurück zum Zitat Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings of the 6th annual international conference on mobile computing and networking (pp. 56–67). Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings of the 6th annual international conference on mobile computing and networking (pp. 56–67).
57.
Zurück zum Zitat Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.CrossRef Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.CrossRef
58.
Zurück zum Zitat Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11(3), 570–580.CrossRef Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11(3), 570–580.CrossRef
59.
Zurück zum Zitat Kamat, P. V. (2006). Harvesting photons with carbon nanotubes. Nano Today, 1(4), 20–27.CrossRef Kamat, P. V. (2006). Harvesting photons with carbon nanotubes. Nano Today, 1(4), 20–27.CrossRef
60.
Zurück zum Zitat Khanna, G., Bagchi, S., & Wu, Y.-S. (2004). Fault tolerant energy aware data dissemination protocol in sensor networks. In International conference on dependable systems and networks (pp. 795–804). Khanna, G., Bagchi, S., & Wu, Y.-S. (2004). Fault tolerant energy aware data dissemination protocol in sensor networks. In International conference on dependable systems and networks (pp. 795–804).
61.
Zurück zum Zitat Kiess, W., & Mauve, M. (2007). A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks, 5(3), 324–339.CrossRef Kiess, W., & Mauve, M. (2007). A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks, 5(3), 324–339.CrossRef
62.
Zurück zum Zitat Konstantopoulos, C., Pantziou, G., Gavalas, D., Mpitziopoulos, A., & Mamalis, B. (2012). A rendezvous-based approach enabling energy-efficient sensory data collection with mobile sinks. IEEE Transactions on Parallel and Distributed Systems, 23(5), 809–817.CrossRef Konstantopoulos, C., Pantziou, G., Gavalas, D., Mpitziopoulos, A., & Mamalis, B. (2012). A rendezvous-based approach enabling energy-efficient sensory data collection with mobile sinks. IEEE Transactions on Parallel and Distributed Systems, 23(5), 809–817.CrossRef
63.
Zurück zum Zitat Koutsonikolas, D., Das, S. M., Hu, Y. C., & Stojmenovic, I. (2010). Hierarchical geographic multicast routing for wireless sensor networks. Wireless Networks, 16(2), 449–466.CrossRef Koutsonikolas, D., Das, S. M., Hu, Y. C., & Stojmenovic, I. (2010). Hierarchical geographic multicast routing for wireless sensor networks. Wireless Networks, 16(2), 449–466.CrossRef
64.
Zurück zum Zitat Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117–131.CrossRef Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117–131.CrossRef
65.
Zurück zum Zitat Lee, J.-H., & Jung, I.-B. (2010). Speedy routing recovery protocol for large failure tolerance in wireless sensor networks. Sensors, 10(4), 3389–3410.CrossRef Lee, J.-H., & Jung, I.-B. (2010). Speedy routing recovery protocol for large failure tolerance in wireless sensor networks. Sensors, 10(4), 3389–3410.CrossRef
66.
Zurück zum Zitat Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.CrossRef Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.CrossRef
67.
Zurück zum Zitat Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.CrossRef Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.CrossRef
68.
Zurück zum Zitat Li, Y., & Shi, R. (2015). An intelligent solar energy-harvesting system for wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–12.MathSciNet Li, Y., & Shi, R. (2015). An intelligent solar energy-harvesting system for wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–12.MathSciNet
69.
Zurück zum Zitat Liu, B.-H., & Jhang, J.-Y. (2014). Efficient distributed data scheduling algorithm for data aggregation in wireless sensor networks. Computer Networks, 65, 73–83.CrossRef Liu, B.-H., & Jhang, J.-Y. (2014). Efficient distributed data scheduling algorithm for data aggregation in wireless sensor networks. Computer Networks, 65, 73–83.CrossRef
70.
Zurück zum Zitat Liu, H., Jia, X., Wan, P.-J., Liu, X., & Yao, F. F. (2007). A distributed and efficient flooding scheme using 1-hop information in mobile ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 18(5), 658–671.CrossRef Liu, H., Jia, X., Wan, P.-J., Liu, X., & Yao, F. F. (2007). A distributed and efficient flooding scheme using 1-hop information in mobile ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 18(5), 658–671.CrossRef
71.
Zurück zum Zitat Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.MathSciNet Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.MathSciNet
72.
Zurück zum Zitat Liu, X.-Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRef Liu, X.-Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRef
73.
Zurück zum Zitat Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.CrossRef Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.CrossRef
74.
Zurück zum Zitat Madden, S., Szewczyk, R., Franklin, M. J., & Culler, D. (2002). Supporting aggregate queries over ad-hoc wireless sensor networks. In Proceedings of the fourth IEEE workshop on mobile computing systems and applications (pp. 49–58). Madden, S., Szewczyk, R., Franklin, M. J., & Culler, D. (2002). Supporting aggregate queries over ad-hoc wireless sensor networks. In Proceedings of the fourth IEEE workshop on mobile computing systems and applications (pp. 49–58).
75.
Zurück zum Zitat Madden, S. R., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2005). TinyDB: An acquisitional query processing system for sensor networks. ACM Transactions on Database Systems (TODS), 30(1), 122–173.CrossRef Madden, S. R., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2005). TinyDB: An acquisitional query processing system for sensor networks. ACM Transactions on Database Systems (TODS), 30(1), 122–173.CrossRef
76.
Zurück zum Zitat Manjeshwar, A., & and Agrawal, D. P. (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In International parallel and distributed processing symposium (p. 30189a). Manjeshwar, A., & and Agrawal, D. P. (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In International parallel and distributed processing symposium (p. 30189a).
77.
Zurück zum Zitat Manjeshwar, A., & Apteen, D. A. (2002). A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In 1st IEEE international parallel and distributed processing symposium, Fort Lauderdale, FL, USA. Manjeshwar, A., & Apteen, D. A. (2002). A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In 1st IEEE international parallel and distributed processing symposium, Fort Lauderdale, FL, USA.
78.
Zurück zum Zitat Manjhi, A., Nath, S., & Gibbons, P. B. (2005). Tributaries and deltas: Efficient and robust aggregation in sensor network streams. In Proceedings of the ACM SIGMOD international conference on management of data (pp. 287–298). Manjhi, A., Nath, S., & Gibbons, P. B. (2005). Tributaries and deltas: Efficient and robust aggregation in sensor network streams. In Proceedings of the ACM SIGMOD international conference on management of data (pp. 287–298).
79.
Zurück zum Zitat Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi:10.1109/TC.2015.2417543. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi:10.​1109/​TC.​2015.​2417543.
80.
Zurück zum Zitat Merck, M. (2010). The icecube detector: A large sensor network at the south pole. IEEE Pervasive Computing, 9(4), 43–47.CrossRef Merck, M. (2010). The icecube detector: A large sensor network at the south pole. IEEE Pervasive Computing, 9(4), 43–47.CrossRef
81.
Zurück zum Zitat Michahelles, F., Matter, P., Schmidt, A., & Schiele, B. (2003). Applying wearable sensors to avalanche rescue. Computers & Graphics, 27(6), 839–847.CrossRef Michahelles, F., Matter, P., Schmidt, A., & Schiele, B. (2003). Applying wearable sensors to avalanche rescue. Computers & Graphics, 27(6), 839–847.CrossRef
82.
Zurück zum Zitat Mohrehkesh, S., & Weigle, M. C. (2014). Optimizing energy consumption in terahertz band nanonetworks. IEEE Journal on Selected Areas in Communications, 32(12), 2432–2441.CrossRef Mohrehkesh, S., & Weigle, M. C. (2014). Optimizing energy consumption in terahertz band nanonetworks. IEEE Journal on Selected Areas in Communications, 32(12), 2432–2441.CrossRef
83.
Zurück zum Zitat Nechibvute, A., Chawanda, A., & Luhanga, P. (2012). Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors. Smart Materials Research, 2012, 1–13.CrossRef Nechibvute, A., Chawanda, A., & Luhanga, P. (2012). Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors. Smart Materials Research, 2012, 1–13.CrossRef
84.
Zurück zum Zitat Papadopoulos, A., Navarra, A., Mccann, J. A., & Pinotti, C. M. (2012). VIBE: An energy efficient routing protocol for dense and mobile sensor networks. Journal of Network and Computer Applications, 35(4), 1177–1190.CrossRef Papadopoulos, A., Navarra, A., Mccann, J. A., & Pinotti, C. M. (2012). VIBE: An energy efficient routing protocol for dense and mobile sensor networks. Journal of Network and Computer Applications, 35(4), 1177–1190.CrossRef
85.
Zurück zum Zitat Pierobon, M., Jornet, J. M., Akkari, N., Almasri, S., & Akyildiz, I. F. (2014). A routing framework for energy harvesting wireless nanosensor networks in the terahertz band. Wireless Networks, 20(5), 1169–1183.CrossRef Pierobon, M., Jornet, J. M., Akkari, N., Almasri, S., & Akyildiz, I. F. (2014). A routing framework for energy harvesting wireless nanosensor networks in the terahertz band. Wireless Networks, 20(5), 1169–1183.CrossRef
86.
Zurück zum Zitat Pothuri, P. K., Sarangan, V., & Thomas, J. P. (2006). Delay-constrained, energy-efficient routing in wireless sensor networks through topology control. In Proceedings of the IEEE international conference on networking, sensing and control (ICNSC’06) (pp. 35–41). Pothuri, P. K., Sarangan, V., & Thomas, J. P. (2006). Delay-constrained, energy-efficient routing in wireless sensor networks through topology control. In Proceedings of the IEEE international conference on networking, sensing and control (ICNSC’06) (pp. 35–41).
87.
Zurück zum Zitat Pradhan, G. N., & Prabhakaran, B. (2008). Storage, retrieval, and communication of body sensor network data. In Proceedings of the 16th ACM international conference on multimedia (pp. 1161–1162). Pradhan, G. N., & Prabhakaran, B. (2008). Storage, retrieval, and communication of body sensor network data. In Proceedings of the 16th ACM international conference on multimedia (pp. 1161–1162).
88.
Zurück zum Zitat Ren, F., Zhang, J., He, T., Lin, C., & Ren, S. K. (2011). EBRP: Energy-balanced routing protocol for data gathering in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(12), 2108–2125.CrossRef Ren, F., Zhang, J., He, T., Lin, C., & Ren, S. K. (2011). EBRP: Energy-balanced routing protocol for data gathering in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(12), 2108–2125.CrossRef
89.
Zurück zum Zitat Ren, X., Liang, W., & Xu, W. (2015). Quality-aware target coverage in energy harvesting sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(1), 8–21.CrossRef Ren, X., Liang, W., & Xu, W. (2015). Quality-aware target coverage in energy harvesting sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(1), 8–21.CrossRef
90.
Zurück zum Zitat Ritchie, L., Deval, S., Reisslein, M., & Richa, A. W. (2009). Evaluation of physical carrier sense based spanner construction and maintenance as well as broadcast and convergecast in ad hoc networks. Ad Hoc Networks, 7(7), 1347–1369.CrossRef Ritchie, L., Deval, S., Reisslein, M., & Richa, A. W. (2009). Evaluation of physical carrier sense based spanner construction and maintenance as well as broadcast and convergecast in ad hoc networks. Ad Hoc Networks, 7(7), 1347–1369.CrossRef
91.
Zurück zum Zitat Sanchez, J., Ruiz, P. M., & Stojmenovic, I. (2006). GMR: Geographic multicast routing for wireless sensor networks. In 3rd annual IEEE communications society on sensor and ad hoc communications and networks (SECON ‘06) (pp. 20–29). Sanchez, J., Ruiz, P. M., & Stojmenovic, I. (2006). GMR: Geographic multicast routing for wireless sensor networks. In 3rd annual IEEE communications society on sensor and ad hoc communications and networks (SECON ‘06) (pp. 20–29).
92.
Zurück zum Zitat Seema, A., & Reisslein, M. (2011). Towards efficient wireless video sensor networks: A survey of existing node architectures and proposal for a flexi-WVSNP design. IEEE Communications Surveys & Tutorials, 13(3), 462–486.CrossRef Seema, A., & Reisslein, M. (2011). Towards efficient wireless video sensor networks: A survey of existing node architectures and proposal for a flexi-WVSNP design. IEEE Communications Surveys & Tutorials, 13(3), 462–486.CrossRef
93.
Zurück zum Zitat Sengupta, S., Das, S., Nasir, M., Vasilakos, A. V., & Pedrycz, W. (2012). An Evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(6), 1093–1102.CrossRef Sengupta, S., Das, S., Nasir, M., Vasilakos, A. V., & Pedrycz, W. (2012). An Evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(6), 1093–1102.CrossRef
94.
Zurück zum Zitat Seo, J., Kim, M., Hur, I., Choi, W., & Choo, H. (2010). DRDT: Distributed and reliable data transmission with cooperative nodes for lossywireless sensor networks. Sensors, 10(4), 2793–2811.CrossRef Seo, J., Kim, M., Hur, I., Choi, W., & Choo, H. (2010). DRDT: Distributed and reliable data transmission with cooperative nodes for lossywireless sensor networks. Sensors, 10(4), 2793–2811.CrossRef
95.
Zurück zum Zitat Sha, K., Shi, W., & Watkins, O. (2006). Using wireless sensor networks for fire rescue applications: Requirements and challenges. In IEEE international conference on electro/information technology (pp. 239–244). Sha, K., Shi, W., & Watkins, O. (2006). Using wireless sensor networks for fire rescue applications: Requirements and challenges. In IEEE international conference on electro/information technology (pp. 239–244).
96.
Zurück zum Zitat Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef
97.
Zurück zum Zitat Sheu, J.-P., Sahoo, P. K., Su, C.-H., & Hu, W.-K. (2010). Efficient path planning and data gathering protocols for the wireless sensor network. Computer Communications, 33(3), 398–408.CrossRef Sheu, J.-P., Sahoo, P. K., Su, C.-H., & Hu, W.-K. (2010). Efficient path planning and data gathering protocols for the wireless sensor network. Computer Communications, 33(3), 398–408.CrossRef
98.
Zurück zum Zitat Sicari, S., Grieco, L. A., Boggia, G., & Coen-Porisini, A. (2012). DYDAP: A dynamic data aggregation scheme for privacy aware wireless sensor networks. Journal of Systems and Software, 85(1), 152–166.CrossRef Sicari, S., Grieco, L. A., Boggia, G., & Coen-Porisini, A. (2012). DYDAP: A dynamic data aggregation scheme for privacy aware wireless sensor networks. Journal of Systems and Software, 85(1), 152–166.CrossRef
99.
Zurück zum Zitat Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.CrossRef Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.CrossRef
100.
Zurück zum Zitat Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.CrossRef Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.CrossRef
101.
Zurück zum Zitat Sun, Y., He, Y., Zhang, B., & Liu, X. (2011). An energy efficiency clustering routing protocol for WSNS in confined area. Mining Science and Technology (China), 21(6), 845–850.CrossRef Sun, Y., He, Y., Zhang, B., & Liu, X. (2011). An energy efficiency clustering routing protocol for WSNS in confined area. Mining Science and Technology (China), 21(6), 845–850.CrossRef
102.
Zurück zum Zitat Sung, J., Ahn, S., Park, T., Jang, S., Yun, D., Kang, J., et al. (2008). Wireless sensor networks for cultural property protection. In 22nd international conference on advanced information networking and applications-workshops (AINAW 2008) (pp. 615–620). Sung, J., Ahn, S., Park, T., Jang, S., Yun, D., Kang, J., et al. (2008). Wireless sensor networks for cultural property protection. In 22nd international conference on advanced information networking and applications-workshops (AINAW 2008) (pp. 615–620).
103.
Zurück zum Zitat Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.CrossRef Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.CrossRef
104.
Zurück zum Zitat Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.
105.
Zurück zum Zitat Villas, L. A., Boukerche, A., De Oliveira, H. A., De Araujo, R. B., & Loureiro, A. A. (2014). A Spatial correlation aware algorithm to perform efficient data collection in wireless sensor networks. Ad Hoc Networks, 12, 69–85.CrossRef Villas, L. A., Boukerche, A., De Oliveira, H. A., De Araujo, R. B., & Loureiro, A. A. (2014). A Spatial correlation aware algorithm to perform efficient data collection in wireless sensor networks. Ad Hoc Networks, 12, 69–85.CrossRef
106.
Zurück zum Zitat Wang, Y.-C., Peng, W.-C., & Tseng, Y.-C. (2010). Energy-balanced dispatch of mobile sensors in a hybrid wireless sensor network. IEEE Transactions on Parallel and Distributed Systems, 21(12), 1836–1850.CrossRef Wang, Y.-C., Peng, W.-C., & Tseng, Y.-C. (2010). Energy-balanced dispatch of mobile sensors in a hybrid wireless sensor network. IEEE Transactions on Parallel and Distributed Systems, 21(12), 1836–1850.CrossRef
107.
Zurück zum Zitat Watfa, M. K. (2012). A position-based routing algorithm in 3D sensor networks. Wireless Communications and Mobile Computing, 12(1), 33–52.CrossRef Watfa, M. K. (2012). A position-based routing algorithm in 3D sensor networks. Wireless Communications and Mobile Computing, 12(1), 33–52.CrossRef
108.
Zurück zum Zitat Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman filter. Computer Communications, 34(6), 793–802.CrossRef Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman filter. Computer Communications, 34(6), 793–802.CrossRef
109.
Zurück zum Zitat Wu, G., Lin, C., Xia, F., Yao, L., Zhang, H., & Liu, B. (2010). Dynamical jumping real-time fault-tolerant routing protocol for wireless sensor networks. Sensors, 10(3), 2416–2437.CrossRef Wu, G., Lin, C., Xia, F., Yao, L., Zhang, H., & Liu, B. (2010). Dynamical jumping real-time fault-tolerant routing protocol for wireless sensor networks. Sensors, 10(3), 2416–2437.CrossRef
110.
Zurück zum Zitat Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed Data aggregation for energy efficient wireless sensor networks. In 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54). Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed Data aggregation for energy efficient wireless sensor networks. In 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54).
111.
Zurück zum Zitat Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D.-Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for mac protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.CrossRef Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D.-Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for mac protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.CrossRef
112.
Zurück zum Zitat Xiong, N., Vasilakos, A. V., Yang, L. T., Song, L., Pan, Y., Kannan, R., & Li, Y. (2009). Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 495–509.CrossRef Xiong, N., Vasilakos, A. V., Yang, L. T., Song, L., Pan, Y., Kannan, R., & Li, Y. (2009). Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 495–509.CrossRef
113.
Zurück zum Zitat Xu, H., Huang, L., Qiao, C., Zhang, Y., & Sun, Q. (2012). Bandwidth-power aware cooperative multipath routing for wireless multimedia sensor networks. IEEE Transactions on Wireless Communications, 11(4), 1532–1543.CrossRef Xu, H., Huang, L., Qiao, C., Zhang, Y., & Sun, Q. (2012). Bandwidth-power aware cooperative multipath routing for wireless multimedia sensor networks. IEEE Transactions on Wireless Communications, 11(4), 1532–1543.CrossRef
114.
Zurück zum Zitat Xu, S., Hansen, B. J., & Wang, Z. L. (2010). Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 1, 93.CrossRef Xu, S., Hansen, B. J., & Wang, Z. L. (2010). Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 1, 93.CrossRef
115.
Zurück zum Zitat Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., & Wang, Z. L. (2010). Self-powered nanowire devices. Nature Nanotechnology, 5(5), 366–373.CrossRef Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., & Wang, Z. L. (2010). Self-powered nanowire devices. Nature Nanotechnology, 5(5), 366–373.CrossRef
116.
Zurück zum Zitat Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNS. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.CrossRef Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNS. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.CrossRef
117.
Zurück zum Zitat Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for internet of things. Journal of Network and computer Applications, 42, 120–134.CrossRef Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for internet of things. Journal of Network and computer Applications, 42, 120–134.CrossRef
118.
Zurück zum Zitat Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2014). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.CrossRef Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2014). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.CrossRef
119.
Zurück zum Zitat Yang, Y., Zhang, H., Lin, Z.-H., Zhou, Y. S., Jing, Q., Su, Y., et al. (2013). Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano, 7(10), 9213–9222.CrossRef Yang, Y., Zhang, H., Lin, Z.-H., Zhou, Y. S., Jing, Q., Su, Y., et al. (2013). Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano, 7(10), 9213–9222.CrossRef
120.
Zurück zum Zitat Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In IEEE 10th international conference on mobile ad hoc and sensor systems (MASS) (pp. 182–190). Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In IEEE 10th international conference on mobile ad hoc and sensor systems (MASS) (pp. 182–190).
121.
Zurück zum Zitat Yao, Y., & Gehrke, J. (2002). The cougar approach to in-network query processing in sensor networks. ACM Sigmod Record, 31(3), 9–18.CrossRef Yao, Y., & Gehrke, J. (2002). The cougar approach to in-network query processing in sensor networks. ACM Sigmod Record, 31(3), 9–18.CrossRef
122.
Zurück zum Zitat Younis, M., Youssef, M., & Arisha, K. (2002). Energy-aware routing in cluster-based sensor networks. In Proceedings of the 10th IEEE international symposium on modeling, analysis and simulation of computer and telecommunications systems (MASCOTS 2002) (pp. 129–136). Younis, M., Youssef, M., & Arisha, K. (2002). Energy-aware routing in cluster-based sensor networks. In Proceedings of the 10th IEEE international symposium on modeling, analysis and simulation of computer and telecommunications systems (MASCOTS 2002) (pp. 129–136).
123.
Zurück zum Zitat Yousefi, H., Yeganeh, M. H., Alinaghipour, N., & Movaghar, A. (2012). Structure-free real-time data aggregation in wireless sensor networks. Computer Communications, 35(9), 1132–1140.CrossRef Yousefi, H., Yeganeh, M. H., Alinaghipour, N., & Movaghar, A. (2012). Structure-free real-time data aggregation in wireless sensor networks. Computer Communications, 35(9), 1132–1140.CrossRef
124.
Zurück zum Zitat Yu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks. Technical report UCLA/CSD-TR-01-0023. Computer Science Department: UCLA. Yu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks. Technical report UCLA/CSD-TR-01-0023. Computer Science Department: UCLA.
125.
Zurück zum Zitat Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRef Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRef
126.
Zurück zum Zitat Zhang, B., Simon, R., & Aydin, H. (2013). Harvesting-Aware energy management for time-critical wireless sensor networks with joint voltage and modulation scaling. IEEE Transactions on Industrial Informatics, 9(1), 514–526.CrossRef Zhang, B., Simon, R., & Aydin, H. (2013). Harvesting-Aware energy management for time-critical wireless sensor networks with joint voltage and modulation scaling. IEEE Transactions on Industrial Informatics, 9(1), 514–526.CrossRef
127.
Zurück zum Zitat Zhang, C. (2013). Nonlinear oscillator for vibration energy harvesting. Google Patents. Zhang, C. (2013). Nonlinear oscillator for vibration energy harvesting. Google Patents.
128.
Zurück zum Zitat Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.CrossRef Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.CrossRef
129.
Zurück zum Zitat Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.CrossRef Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.CrossRef
130.
Zurück zum Zitat Zheng, G., Liu, S., & Qi, X. (2012). Clustering routing algorithm of wireless sensor networks based on Bayesian game. Journal of Systems Engineering and Electronics, 23(1), 154–159.CrossRef Zheng, G., Liu, S., & Qi, X. (2012). Clustering routing algorithm of wireless sensor networks based on Bayesian game. Journal of Systems Engineering and Electronics, 23(1), 154–159.CrossRef
131.
Zurück zum Zitat Zhou, L., Naixue, X., Shu, L., Vasilakos, A., & Yeo, S.-S. (2010). Context-aware middleware for multimedia services in heterogeneous networks. IEEE Intelligent Systems, 25(2), 40–47. doi:10.1109/MIS.2010.48.CrossRef Zhou, L., Naixue, X., Shu, L., Vasilakos, A., & Yeo, S.-S. (2010). Context-aware middleware for multimedia services in heterogeneous networks. IEEE Intelligent Systems, 25(2), 40–47. doi:10.​1109/​MIS.​2010.​48.CrossRef
132.
Zurück zum Zitat Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.CrossRef Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.CrossRef
Metadaten
Titel
Energy harvesting and battery power based routing in wireless sensor networks
verfasst von
Mohammad Hossein Anisi
Gaddafi Abdul-Salaam
Mohd. Yamani Idna Idris
Ainuddin Wahid Abdul Wahab
Ismail Ahmedy
Publikationsdatum
15.12.2015
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-015-1150-6

Weitere Artikel der Ausgabe 1/2017

Wireless Networks 1/2017 Zur Ausgabe

Neuer Inhalt