Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Energy Harvesting Technologies and Market Opportunities

verfasst von : Farzad H. Panahi, Fereidoun H. Panahi

Erschienen in: Electricity Markets

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy harvesting (EH) is a process in which ambient energies are utilized to form effective energies using various advanced techniques. Growing demand for energy in major end-use industries and green powered technologies are expected to drive the overall EH market. Indeed, the significant growth of the market can be attributed to the increasing installation of wireless sensor networks (WSNs) and Internet of Things (IoT) which are expected to boost the EH market through increasing self-powered sensors. In general, this chapter investigates the EH framework based on energy sources and technologies, intelligent solutions, and market opportunities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Schaffers et al., Smart cities and the future internet: towards cooperation frameworks for open innovation, in The Future Internet, Lect. Notes Comput. Sci., vol. 6656 (2011), pp. 431–446 H. Schaffers et al., Smart cities and the future internet: towards cooperation frameworks for open innovation, in The Future Internet, Lect. Notes Comput. Sci., vol. 6656 (2011), pp. 431–446
2.
Zurück zum Zitat S. Chen et al., A vision of IoT: applications, challenges, and opportunities with China perspective. IEEE Internet Things J. 1(4), 349–359 (2014)CrossRef S. Chen et al., A vision of IoT: applications, challenges, and opportunities with China perspective. IEEE Internet Things J. 1(4), 349–359 (2014)CrossRef
3.
Zurück zum Zitat O. Vermesan, P. Friess, Internet of Things strategic research and innovation agenda, in Internet of Things—Converging Technologies for Smart Environments and Integrated Ecosystems, (River Publishers, Denmark, 2013) O. Vermesan, P. Friess, Internet of Things strategic research and innovation agenda, in Internet of Things—Converging Technologies for Smart Environments and Integrated Ecosystems, (River Publishers, Denmark, 2013)
4.
Zurück zum Zitat L. Atzori et al., The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)MATHCrossRef L. Atzori et al., The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)MATHCrossRef
5.
Zurück zum Zitat A. Zanella et al., Internet of Things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRef A. Zanella et al., Internet of Things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRef
6.
Zurück zum Zitat S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutorials 13(3), 443–461 (2011)CrossRef S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutorials 13(3), 443–461 (2011)CrossRef
7.
Zurück zum Zitat J.W. Matiko et al., Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25(1), 1–25 (2013) J.W. Matiko et al., Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25(1), 1–25 (2013)
8.
Zurück zum Zitat J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Perv. Comput. 4, 18–27 (2005)CrossRef J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Perv. Comput. 4, 18–27 (2005)CrossRef
9.
Zurück zum Zitat V. Raghunathan, C. Schurgers, P. Sung, M.B. Srivastava, Energy-aware wireless microsensor networks. IEEE Signal Process. Mag. 19, 40–50 (2002)CrossRef V. Raghunathan, C. Schurgers, P. Sung, M.B. Srivastava, Energy-aware wireless microsensor networks. IEEE Signal Process. Mag. 19, 40–50 (2002)CrossRef
10.
Zurück zum Zitat S. Roundy, Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion, Ph.D. Dissertation, Dept. of EECS, UC Berkeley, May 2003 S. Roundy, Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion, Ph.D. Dissertation, Dept. of EECS, UC Berkeley, May 2003
11.
Zurück zum Zitat J. Rabaey, M.J. Ammer, J.L. Silva, D. Patel, S. Roundy, Picaradio supports ad hoc ultra-low power wireless networking. IEEE Comput. 33, 42–48 (2000)CrossRef J. Rabaey, M.J. Ammer, J.L. Silva, D. Patel, S. Roundy, Picaradio supports ad hoc ultra-low power wireless networking. IEEE Comput. 33, 42–48 (2000)CrossRef
12.
Zurück zum Zitat J.H. Kansal, S. Zahedi, M.B. Srivastava, Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6(4), 32 (2007)CrossRef J.H. Kansal, S. Zahedi, M.B. Srivastava, Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6(4), 32 (2007)CrossRef
14.
Zurück zum Zitat J. Ieropoulos, C.M. Greenman, J. Hart, Comparative study of three types of microbial fuel cells. Enzym. Microb. Technol. 37, 238–245 (2005)CrossRef J. Ieropoulos, C.M. Greenman, J. Hart, Comparative study of three types of microbial fuel cells. Enzym. Microb. Technol. 37, 238–245 (2005)CrossRef
16.
Zurück zum Zitat A.S. Adila, A. Husam, G. Husi, Towards the self-powered Internet of Things (IoT) by energy harvesting: trends and technologies for green IoT, in 2nd IEEE International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS) (2018) pp. 1–5 A.S. Adila, A. Husam, G. Husi, Towards the self-powered Internet of Things (IoT) by energy harvesting: trends and technologies for green IoT, in 2nd IEEE International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS) (2018) pp. 1–5
17.
Zurück zum Zitat P. Kamalinejad et al., Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)CrossRef P. Kamalinejad et al., Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)CrossRef
18.
Zurück zum Zitat J. Han, J. Hu, Y. Yang, Z. Wang, S.X. Wang, J. He, A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from ac power line. IEEE Trans. Ind. Electron. 62(7), 4398–4407 (2015)CrossRef J. Han, J. Hu, Y. Yang, Z. Wang, S.X. Wang, J. He, A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from ac power line. IEEE Trans. Ind. Electron. 62(7), 4398–4407 (2015)CrossRef
19.
Zurück zum Zitat B. Fateh, M. Govindarasu, V. Ajjarapu, Wireless network design for transmission line monitoring in smart grid. IEEE Trans. Smart Grid 4(2), 1076–1086 (2013)CrossRef B. Fateh, M. Govindarasu, V. Ajjarapu, Wireless network design for transmission line monitoring in smart grid. IEEE Trans. Smart Grid 4(2), 1076–1086 (2013)CrossRef
20.
Zurück zum Zitat J.L. Wardlaw, I. Karaman, A.I. Karsilayan, Low-power circuits and energy harvesting for structural health monitoring of bridges. IEEE Sensors J. 13(2), 709–722 (2013). L. Zhou, A.C. AbrahamCrossRef J.L. Wardlaw, I. Karaman, A.I. Karsilayan, Low-power circuits and energy harvesting for structural health monitoring of bridges. IEEE Sensors J. 13(2), 709–722 (2013). L. Zhou, A.C. AbrahamCrossRef
21.
Zurück zum Zitat S.Y. Tang, S. Chakrabartty, A 5nw quasi-linear CMOS hot-electron injector for self-powered monitoring of biomechanical strain variations. IEEE Trans. Biomed. Circ. Syst. 10(6), 1143–1151 (2016)CrossRef S.Y. Tang, S. Chakrabartty, A 5nw quasi-linear CMOS hot-electron injector for self-powered monitoring of biomechanical strain variations. IEEE Trans. Biomed. Circ. Syst. 10(6), 1143–1151 (2016)CrossRef
22.
Zurück zum Zitat C. Zhu, V.C.M. Leung, L. Shu, E.C.-H. Ngai, Green Internet of Things for smart world. IEEE Access 3, 2151–2162 (2015)CrossRef C. Zhu, V.C.M. Leung, L. Shu, E.C.-H. Ngai, Green Internet of Things for smart world. IEEE Access 3, 2151–2162 (2015)CrossRef
23.
Zurück zum Zitat A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)CrossRef A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)CrossRef
24.
Zurück zum Zitat Z. Wang, X. Qin, B. Liu, An energy-efficient clustering routing algorithm for WSN-assisted IoT, in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6 Z. Wang, X. Qin, B. Liu, An energy-efficient clustering routing algorithm for WSN-assisted IoT, in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6
25.
Zurück zum Zitat H. Hejazi, H. Rajab, T. Cinkler, L. Lengyel, Survey of platforms for massive IOT, in 2018 IEEE International Conference on Future IoT Technologies (Future IoT), IEEE, pp. 1–8 H. Hejazi, H. Rajab, T. Cinkler, L. Lengyel, Survey of platforms for massive IOT, in 2018 IEEE International Conference on Future IoT Technologies (Future IoT), IEEE, pp. 1–8
26.
Zurück zum Zitat T. Ruan, Z.J. Chew, M. Zhu, Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors J. 17(7), 2165–2173 (2017)CrossRef T. Ruan, Z.J. Chew, M. Zhu, Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors J. 17(7), 2165–2173 (2017)CrossRef
27.
Zurück zum Zitat F.H. Panahi, A. Falahati, Spectral efficient impulse radio-ultra-wideband transmission model in presence of pulse attenuation and timing jitter. IET Commun. 6(11), 1544–1554 (2012)MathSciNetMATHCrossRef F.H. Panahi, A. Falahati, Spectral efficient impulse radio-ultra-wideband transmission model in presence of pulse attenuation and timing jitter. IET Commun. 6(11), 1544–1554 (2012)MathSciNetMATHCrossRef
28.
Zurück zum Zitat F.H. Panahi, F.H. Panahi, M. Ghaderzadeh, A. Mohammadisarab, M2M communications as a promising technique to support green powered base stations, in 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran (2019), pp. 1654–1658 F.H. Panahi, F.H. Panahi, M. Ghaderzadeh, A. Mohammadisarab, M2M communications as a promising technique to support green powered base stations, in 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran (2019), pp. 1654–1658
29.
Zurück zum Zitat F.H. Panahi, F.H. Panahi, S. Heshmati, T. Ohtsuki, Optimal sleep & wakeup mechanism for green Internet of Things, in 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran (2019), pp. 1659–1663 F.H. Panahi, F.H. Panahi, S. Heshmati, T. Ohtsuki, Optimal sleep & wakeup mechanism for green Internet of Things, in 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran (2019), pp. 1659–1663
30.
Zurück zum Zitat F.H. Panahi, P. Hajimirzaee, S. Erfanpoor, F.H. Panahi, T. Ohtsuki, Smart image-processing based energy harvesting for green Internet of Things, in 2018 Smart Grid Conference (SGC), Sanandaj, Iran (2018), pp. 1–5 F.H. Panahi, P. Hajimirzaee, S. Erfanpoor, F.H. Panahi, T. Ohtsuki, Smart image-processing based energy harvesting for green Internet of Things, in 2018 Smart Grid Conference (SGC), Sanandaj, Iran (2018), pp. 1–5
31.
Zurück zum Zitat F.H. Panahi, S. Moshirvaziri, A. Momene, F.H. Panahi, T. Ohtsuki, D2D-aided optimal utilization of renewable energies for green powered base stations, in 2018 Smart Grid Conference (SGC), Sanandaj, Iran (2018), pp. 1–6 F.H. Panahi, S. Moshirvaziri, A. Momene, F.H. Panahi, T. Ohtsuki, D2D-aided optimal utilization of renewable energies for green powered base stations, in 2018 Smart Grid Conference (SGC), Sanandaj, Iran (2018), pp. 1–6
32.
Zurück zum Zitat F.H. Panahi, P.F.i.Z.H. Panahi, Spectral-efficient green wireless communications via cognitive UWB signal model. Automatika 57(3), 793–809 (2016)CrossRef F.H. Panahi, P.F.i.Z.H. Panahi, Spectral-efficient green wireless communications via cognitive UWB signal model. Automatika 57(3), 793–809 (2016)CrossRef
33.
Zurück zum Zitat F.H. Panahi, A. Falahati, Joint IR-UWB power spectral lines and interference suppression based on coded auxiliary independent signaling in presence of pulse attenuation and timing jitter. Wirel. Pers. Commun. 69(4), 1241–1260 (2013)CrossRef F.H. Panahi, A. Falahati, Joint IR-UWB power spectral lines and interference suppression based on coded auxiliary independent signaling in presence of pulse attenuation and timing jitter. Wirel. Pers. Commun. 69(4), 1241–1260 (2013)CrossRef
34.
Zurück zum Zitat A. Falahati, F.H. Panahi, Spectrally efficient ultra wideband transmission over wireless sensor networks, in IET Conference on Wireless Sensor Systems (WSS 2012) (2012) A. Falahati, F.H. Panahi, Spectrally efficient ultra wideband transmission over wireless sensor networks, in IET Conference on Wireless Sensor Systems (WSS 2012) (2012)
35.
Zurück zum Zitat W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, M. Jo, Efficient energy management for the Internet of Things in smart cities. IEEE Commun. Mag. 55(1), 84–91 (2017)CrossRef W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, M. Jo, Efficient energy management for the Internet of Things in smart cities. IEEE Commun. Mag. 55(1), 84–91 (2017)CrossRef
36.
Zurück zum Zitat G. Yang, C.K. Ho, Y.L. Guan, Dynamic resource allocation for multiple-antenna wireless power transfer. IEEE Trans. Signal Process. 62(14), 3565–3577 (2014)MathSciNetMATHCrossRef G. Yang, C.K. Ho, Y.L. Guan, Dynamic resource allocation for multiple-antenna wireless power transfer. IEEE Trans. Signal Process. 62(14), 3565–3577 (2014)MathSciNetMATHCrossRef
37.
Zurück zum Zitat X. Lu, P. Wang, D. Niyato, D. In Kim, Z. Han, Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutorials 17(2), 757–789 (2015)CrossRef X. Lu, P. Wang, D. Niyato, D. In Kim, Z. Han, Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutorials 17(2), 757–789 (2015)CrossRef
38.
Zurück zum Zitat P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V.C.M. Leung, Y.L. Guan, Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)CrossRef P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V.C.M. Leung, Y.L. Guan, Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)CrossRef
39.
Zurück zum Zitat D. Vincze, Fuzzy rule interpolation and reinforcement learning, in IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI) (2017), pp. 000173–000178 D. Vincze, Fuzzy rule interpolation and reinforcement learning, in IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI) (2017), pp. 000173–000178
40.
Zurück zum Zitat F.H. Panahi, F.H. Panahi, G. Hattab, T. Ohtsuki, D. Cabric, Green heterogeneous networks via an intelligent sleep/wake-up mechanism and D2D communications. IEEE Trans. Green Commun. Netw. 2(4), 915–931 (2018)CrossRef F.H. Panahi, F.H. Panahi, G. Hattab, T. Ohtsuki, D. Cabric, Green heterogeneous networks via an intelligent sleep/wake-up mechanism and D2D communications. IEEE Trans. Green Commun. Netw. 2(4), 915–931 (2018)CrossRef
41.
Zurück zum Zitat T. Podobnikar, Detecting mountain peaks and delineating their shapes using digital elevation models, remote sensing and geographic information systems using autometric methodological procedures. Remote Sens. 4(3), 784–809 (2012)CrossRef T. Podobnikar, Detecting mountain peaks and delineating their shapes using digital elevation models, remote sensing and geographic information systems using autometric methodological procedures. Remote Sens. 4(3), 784–809 (2012)CrossRef
42.
Zurück zum Zitat G. Han, J. Zhang, X. Mu, Joint optimization of energy harvesting and detection threshold for energy harvesting cognitive radio networks. IEEE Access 4, 7212–7222 (2016)CrossRef G. Han, J. Zhang, X. Mu, Joint optimization of energy harvesting and detection threshold for energy harvesting cognitive radio networks. IEEE Access 4, 7212–7222 (2016)CrossRef
43.
Zurück zum Zitat C. Qiu, Y. Hu, Y. Chen, B. Zeng, Lyapunov optimization for energy harvesting wireless sensor communications. IEEE Internet Things J. 5(3), 1947–1956 (2018)CrossRef C. Qiu, Y. Hu, Y. Chen, B. Zeng, Lyapunov optimization for energy harvesting wireless sensor communications. IEEE Internet Things J. 5(3), 1947–1956 (2018)CrossRef
44.
Zurück zum Zitat Z. Wang, V. Aggarwal, X. Wang, Joint energy-bandwidth allocation in multiple broadcast channels with energy harvesting. IEEE Trans. Commun. 63(10), 3842–3855 (2015)CrossRef Z. Wang, V. Aggarwal, X. Wang, Joint energy-bandwidth allocation in multiple broadcast channels with energy harvesting. IEEE Trans. Commun. 63(10), 3842–3855 (2015)CrossRef
45.
Zurück zum Zitat Z. Ullah, I. Ahmed, T. Ali, N. Ahmad, F. Niaz, Y. Cao, Robust and efficient energy harvested-aware routing protocol with clustering approach in body area networks. IEEE Access 7, 33906–33921 (2019)CrossRef Z. Ullah, I. Ahmed, T. Ali, N. Ahmad, F. Niaz, Y. Cao, Robust and efficient energy harvested-aware routing protocol with clustering approach in body area networks. IEEE Access 7, 33906–33921 (2019)CrossRef
46.
Zurück zum Zitat J. Liu, C.R. Lin, J. Tsai, Delay and energy tradeoff in energy harvesting multi-hop wireless networks with inter-session network coding and successive interference cancellation. IEEE Access 5, 544–564 (2017)CrossRef J. Liu, C.R. Lin, J. Tsai, Delay and energy tradeoff in energy harvesting multi-hop wireless networks with inter-session network coding and successive interference cancellation. IEEE Access 5, 544–564 (2017)CrossRef
47.
Zurück zum Zitat K. Chin, L. Wang, S. Soh, Joint routing and links scheduling in two-tier multi-hop RF-energy harvesting networks. IEEE Commun. Lett. 20(9), 1864–1867 (2016)CrossRef K. Chin, L. Wang, S. Soh, Joint routing and links scheduling in two-tier multi-hop RF-energy harvesting networks. IEEE Commun. Lett. 20(9), 1864–1867 (2016)CrossRef
48.
Zurück zum Zitat H. Zhang, Y. Guo, Z. Zhong, W. Wu, Cooperative integration of RF energy harvesting and dedicated WPT for wireless sensor networks. IEEE Microwave Wireless Compon. Lett. 29(4), 291–293 (2019)CrossRef H. Zhang, Y. Guo, Z. Zhong, W. Wu, Cooperative integration of RF energy harvesting and dedicated WPT for wireless sensor networks. IEEE Microwave Wireless Compon. Lett. 29(4), 291–293 (2019)CrossRef
49.
Zurück zum Zitat S.H. Kang, J.H. Choi, F.J. Harackiewicz, C.W. Jung, Magnetic resonant three-coil WPT system between off/in-body for remote energy harvest. IEEE Microwave Wireless Compon. Lett. 26(9), 741–743 (2016)CrossRef S.H. Kang, J.H. Choi, F.J. Harackiewicz, C.W. Jung, Magnetic resonant three-coil WPT system between off/in-body for remote energy harvest. IEEE Microwave Wireless Compon. Lett. 26(9), 741–743 (2016)CrossRef
50.
Zurück zum Zitat S. Wang, M. Xia, K. Huang, Y. Wu, Wirelessly powered two-way communication with nonlinear energy harvesting model: rate regions under fixed and Mobile relay. IEEE Trans. Wireless Commun. 16(12), 8190–8204 (2017)CrossRef S. Wang, M. Xia, K. Huang, Y. Wu, Wirelessly powered two-way communication with nonlinear energy harvesting model: rate regions under fixed and Mobile relay. IEEE Trans. Wireless Commun. 16(12), 8190–8204 (2017)CrossRef
51.
Zurück zum Zitat Y. Tang, A. Khaligh, A multi-input bridgeless resonant AC–DC converter for electromagnetic energy harvesting. IEEE Trans. Power Electron. 31(3), 2254–2263 (2016)CrossRef Y. Tang, A. Khaligh, A multi-input bridgeless resonant AC–DC converter for electromagnetic energy harvesting. IEEE Trans. Power Electron. 31(3), 2254–2263 (2016)CrossRef
52.
Zurück zum Zitat F.A. Samad, M.F. Karim, V. Paulose, L.C. Ong, A curved electromagnetic energy harvesting system for wearable electronics. IEEE Sensors J. 16(7), 1969–1974 (2016)CrossRef F.A. Samad, M.F. Karim, V. Paulose, L.C. Ong, A curved electromagnetic energy harvesting system for wearable electronics. IEEE Sensors J. 16(7), 1969–1974 (2016)CrossRef
53.
Zurück zum Zitat Y. Chen, F. Lai, J. You, Analysis of antenna radiation characteristics using a hybrid ray tracing algorithm for indoor WiFi energy-harvesting rectennas. IEEE Access 7, 38833–38846 (2019)CrossRef Y. Chen, F. Lai, J. You, Analysis of antenna radiation characteristics using a hybrid ray tracing algorithm for indoor WiFi energy-harvesting rectennas. IEEE Access 7, 38833–38846 (2019)CrossRef
54.
Zurück zum Zitat G. Pan, H. Lei, Y. Yuan, Z. Ding, Performance analysis and optimization for SWIPT wireless sensor networks. IEEE Trans. Commun. 65(5), 2291–2302 (2017)CrossRef G. Pan, H. Lei, Y. Yuan, Z. Ding, Performance analysis and optimization for SWIPT wireless sensor networks. IEEE Trans. Commun. 65(5), 2291–2302 (2017)CrossRef
55.
Zurück zum Zitat T. Liu, X. Wang, L. Zheng, A cooperative SWIPT scheme for wirelessly powered sensor networks. IEEE Trans. Commun. 65(6), 2740–2752 (2017)CrossRef T. Liu, X. Wang, L. Zheng, A cooperative SWIPT scheme for wirelessly powered sensor networks. IEEE Trans. Commun. 65(6), 2740–2752 (2017)CrossRef
56.
Zurück zum Zitat S. Gong, S. Ma, C. Xing, G. Yang, Optimal beam-forming and time allocation for partially wireless powered sensor networks with downlink SWIPT. IEEE Trans. Signal Process. 67(12), 3197–3212 (2019)MathSciNetMATHCrossRef S. Gong, S. Ma, C. Xing, G. Yang, Optimal beam-forming and time allocation for partially wireless powered sensor networks with downlink SWIPT. IEEE Trans. Signal Process. 67(12), 3197–3212 (2019)MathSciNetMATHCrossRef
57.
Zurück zum Zitat Q. Zhao, Y. Shen, M. Li, Control and bidding strategy for virtual power plants with renewable generation and inelastic demand in electricity markets. IEEE Trans. Sustainable Energy 7(2), 562–575 (2016)CrossRef Q. Zhao, Y. Shen, M. Li, Control and bidding strategy for virtual power plants with renewable generation and inelastic demand in electricity markets. IEEE Trans. Sustainable Energy 7(2), 562–575 (2016)CrossRef
58.
Zurück zum Zitat J. Knudsen, J. Hansen, A.M. Annaswamy, A dynamic market mechanism for the integration of renewables and demand response. IEEE Trans. Control Syst. Technol. 24(3), 940–955 (2016)CrossRef J. Knudsen, J. Hansen, A.M. Annaswamy, A dynamic market mechanism for the integration of renewables and demand response. IEEE Trans. Control Syst. Technol. 24(3), 940–955 (2016)CrossRef
59.
Zurück zum Zitat D. Li, W. Saad, I. Guvenc, A. Mehbodniya, F. Adachi, Decentralized energy allocation for wireless networks with renewable energy powered base stations. IEEE Trans. Commun. 63(6), 2126–2142 (2015)CrossRef D. Li, W. Saad, I. Guvenc, A. Mehbodniya, F. Adachi, Decentralized energy allocation for wireless networks with renewable energy powered base stations. IEEE Trans. Commun. 63(6), 2126–2142 (2015)CrossRef
60.
Zurück zum Zitat J. Shen, A. Khaligh, A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system. IEEE Trans. Transport. Electr. 1(3), 223–231 (2015)CrossRef J. Shen, A. Khaligh, A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system. IEEE Trans. Transport. Electr. 1(3), 223–231 (2015)CrossRef
61.
Zurück zum Zitat R.H. Byrne, T.A. Nguyen, D.A. Copp, B.R. Chalamala, I. Gyuk, Energy management and optimization methods for grid energy storage systems. IEEE Access 6, 13231–13260 (2018)CrossRef R.H. Byrne, T.A. Nguyen, D.A. Copp, B.R. Chalamala, I. Gyuk, Energy management and optimization methods for grid energy storage systems. IEEE Access 6, 13231–13260 (2018)CrossRef
62.
Zurück zum Zitat I.N. Moghaddam, B.H. Chowdhury, S. Mohajeryami, Predictive operation and optimal sizing of battery energy storage with high wind energy penetration. IEEE Trans. Ind. Electron. 65(8), 6686–6695 (2018)CrossRef I.N. Moghaddam, B.H. Chowdhury, S. Mohajeryami, Predictive operation and optimal sizing of battery energy storage with high wind energy penetration. IEEE Trans. Ind. Electron. 65(8), 6686–6695 (2018)CrossRef
63.
Zurück zum Zitat A.E. Abdulhadi, T.A. Denidni, Self-powered multi-port UHF RFID tag-based-sensor. IEEE J. Radio Freq. Identif. 1(2), 115–123 (2017)CrossRef A.E. Abdulhadi, T.A. Denidni, Self-powered multi-port UHF RFID tag-based-sensor. IEEE J. Radio Freq. Identif. 1(2), 115–123 (2017)CrossRef
64.
Zurück zum Zitat S. Seneviratne et al., A survey of wearable devices and challenges. IEEE Commun. Surv. Tutorials 19(4), 2573–2620 (2017)CrossRef S. Seneviratne et al., A survey of wearable devices and challenges. IEEE Commun. Surv. Tutorials 19(4), 2573–2620 (2017)CrossRef
65.
Zurück zum Zitat C. Dong, S. Li, R. Han, Q. He, X. Li, D. Xu, Self-powered wireless sensor network using event-triggered energy harvesters for monitoring and identifying intrusion activities. IET Power Electron. 12(8), 2079–2085 (2019)CrossRef C. Dong, S. Li, R. Han, Q. He, X. Li, D. Xu, Self-powered wireless sensor network using event-triggered energy harvesters for monitoring and identifying intrusion activities. IET Power Electron. 12(8), 2079–2085 (2019)CrossRef
66.
Zurück zum Zitat J. Ikäheimo, E. Pursiheimo, J. Kiviluoma, H. Holttinen, Role of power to liquids and biomass to liquids in a nearly renewable energy system. IET Renew. Power Gener. 13(7), 1179–1189 (2019)CrossRef J. Ikäheimo, E. Pursiheimo, J. Kiviluoma, H. Holttinen, Role of power to liquids and biomass to liquids in a nearly renewable energy system. IET Renew. Power Gener. 13(7), 1179–1189 (2019)CrossRef
67.
Zurück zum Zitat X. Chen, Y. Wang, Q. Wu, A bio-fuel power generation system with hybrid energy storage under a dynamic programming operation strategy. IEEE Access 7, 64966–64977 (2019)CrossRef X. Chen, Y. Wang, Q. Wu, A bio-fuel power generation system with hybrid energy storage under a dynamic programming operation strategy. IEEE Access 7, 64966–64977 (2019)CrossRef
68.
Zurück zum Zitat J. Katic, S. Rodriguez, A. Rusu, A high-efficiency energy harvesting interface for implanted biofuel cell and thermal harvesters. IEEE Trans. Power Electron. 33(5), 4125–4134 (2018)CrossRef J. Katic, S. Rodriguez, A. Rusu, A high-efficiency energy harvesting interface for implanted biofuel cell and thermal harvesters. IEEE Trans. Power Electron. 33(5), 4125–4134 (2018)CrossRef
69.
Zurück zum Zitat H. Liu, X. Zhao, H. Liang, Z. Li, POMDP-based energy cooperative transmission policy for multiple access model powered by energy harvesting. IEEE Trans. Veh. Technol. 68(6), 5747–5757 (2019)CrossRef H. Liu, X. Zhao, H. Liang, Z. Li, POMDP-based energy cooperative transmission policy for multiple access model powered by energy harvesting. IEEE Trans. Veh. Technol. 68(6), 5747–5757 (2019)CrossRef
70.
Zurück zum Zitat S. Kosunalp, A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access 4, 5755–5763 (2016)CrossRef S. Kosunalp, A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access 4, 5755–5763 (2016)CrossRef
71.
Zurück zum Zitat X. He, H. Jiang, Y. Song, C. He, H. Xiao, Routing selection with reinforcement learning for energy harvesting multi-hop CRN. IEEE Access 7, 54435–54448 (2019)CrossRef X. He, H. Jiang, Y. Song, C. He, H. Xiao, Routing selection with reinforcement learning for energy harvesting multi-hop CRN. IEEE Access 7, 54435–54448 (2019)CrossRef
72.
Zurück zum Zitat S. Xiao, X. Zhou, D. Feng, Y. Yuan-Wu, G.Y. Li, W. Guo, Energy-efficient mobile association in heterogeneous networks with device-to-device communications. IEEE Trans. Wirel. Commun. 8, 5260–5271 (2016)CrossRef S. Xiao, X. Zhou, D. Feng, Y. Yuan-Wu, G.Y. Li, W. Guo, Energy-efficient mobile association in heterogeneous networks with device-to-device communications. IEEE Trans. Wirel. Commun. 8, 5260–5271 (2016)CrossRef
73.
Zurück zum Zitat R. Atat, L. Liu, N. Mastronarde, Y. Yi, Energy harvesting-based D2D-assisted machine-type communications. IEEE Trans. Commun. 65(3), 1289–1302 (2017)CrossRef R. Atat, L. Liu, N. Mastronarde, Y. Yi, Energy harvesting-based D2D-assisted machine-type communications. IEEE Trans. Commun. 65(3), 1289–1302 (2017)CrossRef
74.
Zurück zum Zitat F.H. Panahi, F.H. Panahi, G. Hattab, T. Ohtsuki, D. Cabrici, Green heterogeneous networks via an intelligent power control strategy and D2D communications, in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC (2017), pp. 1–8 F.H. Panahi, F.H. Panahi, G. Hattab, T. Ohtsuki, D. Cabrici, Green heterogeneous networks via an intelligent power control strategy and D2D communications, in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC (2017), pp. 1–8
75.
Zurück zum Zitat Y. Ma, W. Liang, W. Xu, Charging utility maximization in wireless rechargeable sensor networks by charging multiple sensors simultaneously. IEEE/ACM Trans. Netw. 26(4), 1591–1604 (2018)CrossRef Y. Ma, W. Liang, W. Xu, Charging utility maximization in wireless rechargeable sensor networks by charging multiple sensors simultaneously. IEEE/ACM Trans. Netw. 26(4), 1591–1604 (2018)CrossRef
76.
Zurück zum Zitat R. Deng, S. He, P. Cheng, Y. Sun, Towards balanced energy charging and transmission collision in wireless rechargeable sensor networks. J. Commun. Netw. 19(4), 341–350 (2017)CrossRef R. Deng, S. He, P. Cheng, Y. Sun, Towards balanced energy charging and transmission collision in wireless rechargeable sensor networks. J. Commun. Netw. 19(4), 341–350 (2017)CrossRef
77.
Zurück zum Zitat Y. Shu et al., Near-optimal velocity control for mobile charging in wireless rechargeable sensor networks. IEEE Trans. Mobile Comput. 15(7), 1699–1713 (2016)CrossRef Y. Shu et al., Near-optimal velocity control for mobile charging in wireless rechargeable sensor networks. IEEE Trans. Mobile Comput. 15(7), 1699–1713 (2016)CrossRef
Metadaten
Titel
Energy Harvesting Technologies and Market Opportunities
verfasst von
Farzad H. Panahi
Fereidoun H. Panahi
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-36979-8_1