Skip to main content

2014 | OriginalPaper | Buchkapitel

Energy Harvesting Using THz Electronics

verfasst von : Stephen Hall, Ivona Z. Mitrovic, Naser Sedghi, Yao-chun C. Shen, Yi Huang, Jason F. Ralph

Erschienen in: Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we present a review and appraisal of energy harvesting using rectenna devices (‘rectifying antennas’) at THz and solar frequencies. The concept involves capturing the electromagnetic radiation in a nano-scale antenna and rectifying it to direct current. Rectennas may offer much higher efficiency than photovoltaics, in principle but there are considerable challenges in the engineering of such devices. In particular, the rectifier must provide a good match to the antenna at very low currents. Although high efficiency rectennas have been demonstrated at microwave frequencies, the device cannot simply be scaled to the higher frequencies of interest, due to the significant changes in materials properties and these are explained in the paper. Finally a design framework for one rectifier type is presented, namely the metal-insulator diode. This study serves to highlight the considerable challenges associated with the matching issue.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Stressner II, B., Chang, K.: Microwave power transmission: historical milestones and system components. Proc. IEEE 101(6), 1379–1396 (2013)CrossRef Stressner II, B., Chang, K.: Microwave power transmission: historical milestones and system components. Proc. IEEE 101(6), 1379–1396 (2013)CrossRef
3.
Zurück zum Zitat Brown, W.C.: Optimization of the efficiency and other properties of the rectenna element. IEEE MTT-S Int. Microwave Symp. Dig. 76, 142–144 (1976) Brown, W.C.: Optimization of the efficiency and other properties of the rectenna element. IEEE MTT-S Int. Microwave Symp. Dig. 76, 142–144 (1976)
4.
Zurück zum Zitat Suh, Y.H., Chang, K.: A high efficiency dual frequency rectenna for 2.45 and 5.8 GHz wireless power transmission. IEEE Trans. MTT. 50(7), 1784–1789 (2002) Suh, Y.H., Chang, K.: A high efficiency dual frequency rectenna for 2.45 and 5.8 GHz wireless power transmission. IEEE Trans. MTT. 50(7), 1784–1789 (2002)
5.
Zurück zum Zitat Hagerty, J., Popovic, Z.: An experimental and theoretical characterization of a broadband arbitrarily-polarized rectenna array. IEEE MTT-S Int. Microwave Symp. Dig. 3, 1855–1858 (2001) Hagerty, J., Popovic, Z.: An experimental and theoretical characterization of a broadband arbitrarily-polarized rectenna array. IEEE MTT-S Int. Microwave Symp. Dig. 3, 1855–1858 (2001)
6.
Zurück zum Zitat Hagerty, J.A., Helmbrecht, F.B., McCalpin, W.H., Zane, R., Popovic, Z.B.: Recycycling ambient microwave energy with board-band rectenna arrays. IEEE Trans. MTT 52(3), 1014–1024 (2004)CrossRef Hagerty, J.A., Helmbrecht, F.B., McCalpin, W.H., Zane, R., Popovic, Z.B.: Recycycling ambient microwave energy with board-band rectenna arrays. IEEE Trans. MTT 52(3), 1014–1024 (2004)CrossRef
7.
Zurück zum Zitat Bailey, R.L.: A proposed new concept for a solar energy converter. J. Eng. Power. 94(2), 73–77 (1972)CrossRef Bailey, R.L.: A proposed new concept for a solar energy converter. J. Eng. Power. 94(2), 73–77 (1972)CrossRef
8.
Zurück zum Zitat Fletcher, J.C., Bailey, R.L.: Electromagnetic waver energy converter. US Patent No. 3760257 (1973) Fletcher, J.C., Bailey, R.L.: Electromagnetic waver energy converter. US Patent No. 3760257 (1973)
9.
Zurück zum Zitat Marks, A.M.: Device for conversion of light power to electric power. US Patent No. 4445050 (1984) Marks, A.M.: Device for conversion of light power to electric power. US Patent No. 4445050 (1984)
10.
Zurück zum Zitat Kraus, J.D.: Antennas, 2nd edn. McGraw-Hill, New York (1988) Kraus, J.D.: Antennas, 2nd edn. McGraw-Hill, New York (1988)
11.
Zurück zum Zitat Lin, G.H., Abdu, R., Bockris, J.: Investigation of resonance light absorption and rectification by subnanostructures. J. Appl. Phys. 80(1), 565–568 (1996)CrossRef Lin, G.H., Abdu, R., Bockris, J.: Investigation of resonance light absorption and rectification by subnanostructures. J. Appl. Phys. 80(1), 565–568 (1996)CrossRef
12.
Zurück zum Zitat Berland, B.: PV technologies beyond the horizon. Final Report, NREL/SR-520-33263. ITN Energy System, 1–16 (2002) Berland, B.: PV technologies beyond the horizon. Final Report, NREL/SR-520-33263. ITN Energy System, 1–16 (2002)
13.
Zurück zum Zitat Kotter, D.K., Novack, S., Slafer, W., Pinhero, P.: Solar nantenna electromagnetic collectors. In: Proceedings of Energy Sustainability 2008, pp. 1–7. Florida (2008) Kotter, D.K., Novack, S., Slafer, W., Pinhero, P.: Solar nantenna electromagnetic collectors. In: Proceedings of Energy Sustainability 2008, pp. 1–7. Florida (2008)
14.
Zurück zum Zitat Sizov, F., Rogalski, A.: THz detectors. Prog. Quantum Electron. 34, 278–347 (2010)CrossRef Sizov, F., Rogalski, A.: THz detectors. Prog. Quantum Electron. 34, 278–347 (2010)CrossRef
15.
Zurück zum Zitat Hubers, H.W.: Terahertz heterodyne receivers. IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008)CrossRef Hubers, H.W.: Terahertz heterodyne receivers. IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008)CrossRef
16.
Zurück zum Zitat Crowe, T.W., Bishop, W.L., Porterfield, D.W., Hesler, J.L., Weikle, R.M.: Opening the terahertz window with integrated diode circuits. IEEE J. Solid-State Circuits 40, 2104–2110 (2005)CrossRef Crowe, T.W., Bishop, W.L., Porterfield, D.W., Hesler, J.L., Weikle, R.M.: Opening the terahertz window with integrated diode circuits. IEEE J. Solid-State Circuits 40, 2104–2110 (2005)CrossRef
17.
Zurück zum Zitat Ito, H., Nakajim, F., Ohno, T., Furuta, T., Nagatsuma, T., Ishibashi, T.: InP-based planar-antenna-integrated Schottky-barrier diode for millimeter- and sub-millimeter-wave detection. Jpn. J. Appl. Phys. 47, 6256–6261 (2008)CrossRef Ito, H., Nakajim, F., Ohno, T., Furuta, T., Nagatsuma, T., Ishibashi, T.: InP-based planar-antenna-integrated Schottky-barrier diode for millimeter- and sub-millimeter-wave detection. Jpn. J. Appl. Phys. 47, 6256–6261 (2008)CrossRef
18.
Zurück zum Zitat Shiktorov, P., Starikov, E., Gruzinskis, V., Perez, S., Gonzalez, T., Reggiani, L., Varani, L., Vaissiere, J.C.: Theoretical investigation of Schottky-barrier diode noise performance in external resonant circuits. Semicond. Sci. Technol. 21, 550–557 (2006)CrossRef Shiktorov, P., Starikov, E., Gruzinskis, V., Perez, S., Gonzalez, T., Reggiani, L., Varani, L., Vaissiere, J.C.: Theoretical investigation of Schottky-barrier diode noise performance in external resonant circuits. Semicond. Sci. Technol. 21, 550–557 (2006)CrossRef
19.
Zurück zum Zitat Brown, E.R.: A system-level analysis of Schottky diodes for incoherent THz imaging arrays. Solid-State Electron. 48, 2051–2053 (2004)CrossRef Brown, E.R.: A system-level analysis of Schottky diodes for incoherent THz imaging arrays. Solid-State Electron. 48, 2051–2053 (2004)CrossRef
20.
Zurück zum Zitat Kazemi, H., Shinohara, K., Nagy, G., Ha, W., Lail, B., Grossman, E., Zummo, G., Folks, W.R., Alda, J., Boreman, G.: First THz and IR characterization of nanometer-scaled antenna-coupled InGaAs/InP Schottky diode detectors for room temperature infrared imaging. Proc. Infrared Technol. Appl. XXXIII. 6542(1), 65421 J-1–6542 J-4 (2007) Kazemi, H., Shinohara, K., Nagy, G., Ha, W., Lail, B., Grossman, E., Zummo, G., Folks, W.R., Alda, J., Boreman, G.: First THz and IR characterization of nanometer-scaled antenna-coupled InGaAs/InP Schottky diode detectors for room temperature infrared imaging. Proc. Infrared Technol. Appl. XXXIII. 6542(1), 65421 J-1–6542 J-4 (2007)
21.
Zurück zum Zitat Manohara, H.M., Wong, E.W., Schelcht, E., Hunt, B.D., Siegel, P.H.: Carbon nanotube Schottky diodes using Ti-Schottky and Pt-ohmic contacts for high frequency applications. Nano Lett. 5(7), 1469–1474 (2005)CrossRef Manohara, H.M., Wong, E.W., Schelcht, E., Hunt, B.D., Siegel, P.H.: Carbon nanotube Schottky diodes using Ti-Schottky and Pt-ohmic contacts for high frequency applications. Nano Lett. 5(7), 1469–1474 (2005)CrossRef
22.
Zurück zum Zitat Pavelev, D.G., Demarina, N.V., Koshurinov, Y.I., Vasilev, A.P., Semenova, E.S., Zhukov, A.E., Ustinov, V.M.: Semiconductors 38, 1105–1110 (2004)CrossRef Pavelev, D.G., Demarina, N.V., Koshurinov, Y.I., Vasilev, A.P., Semenova, E.S., Zhukov, A.E., Ustinov, V.M.: Semiconductors 38, 1105–1110 (2004)CrossRef
23.
Zurück zum Zitat Hartman, T.E.: Tunneling of a wave packet. J. Appl. Phys. 33, 3427–3433 (1962)CrossRef Hartman, T.E.: Tunneling of a wave packet. J. Appl. Phys. 33, 3427–3433 (1962)CrossRef
24.
Zurück zum Zitat Nagae, M.: Response time of metal-insulator-metal tunnel junctions. Jpn. J. Appl. Phys. 11, 1611–1621 (1972)CrossRef Nagae, M.: Response time of metal-insulator-metal tunnel junctions. Jpn. J. Appl. Phys. 11, 1611–1621 (1972)CrossRef
25.
Zurück zum Zitat Bean, J.A., Tiwari, B., Bernstein, G.H., Fay, P., Porod, W.: Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol. B 27(1), 11–14 (2009)CrossRef Bean, J.A., Tiwari, B., Bernstein, G.H., Fay, P., Porod, W.: Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol. B 27(1), 11–14 (2009)CrossRef
26.
Zurück zum Zitat Tiwari, B., Bean, J.A., Szakmany, G., Bernstein, G.H., Fay, P., Porod, W.: Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol. B 27, 2153–2160 (2009)CrossRef Tiwari, B., Bean, J.A., Szakmany, G., Bernstein, G.H., Fay, P., Porod, W.: Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol. B 27, 2153–2160 (2009)CrossRef
27.
Zurück zum Zitat Bean, J.A., Weeks, A., Boreman, G.D.: Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors. IEEE J. Quantum Electron. 47, 126–135 (2011)CrossRef Bean, J.A., Weeks, A., Boreman, G.D.: Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors. IEEE J. Quantum Electron. 47, 126–135 (2011)CrossRef
28.
Zurück zum Zitat Choi, K., Yesilkoy, F., Ryu, G., Cho, S.H., Goldsman, N., Dagenais, M., Peckerar, M.: A focused asymmetric metal-insulator-metal tunneling diode: fabrication, DC characteristics and RF rectification analysis. IEEE Trans. Electron. Dev. 58(10), 3519–3528 (2011)CrossRef Choi, K., Yesilkoy, F., Ryu, G., Cho, S.H., Goldsman, N., Dagenais, M., Peckerar, M.: A focused asymmetric metal-insulator-metal tunneling diode: fabrication, DC characteristics and RF rectification analysis. IEEE Trans. Electron. Dev. 58(10), 3519–3528 (2011)CrossRef
29.
Zurück zum Zitat Mayer, A., Chung, M.S., Weiss, B.L., Miskovsky, N.M., Cutler, P.H.: Simulations of infrared and optical rectification by geometrically asymmetric metal-vacuum-metal junctions for applications in energy conversion devices. Nanotechnology 21, 145204 (8 pp) (2010) Mayer, A., Chung, M.S., Weiss, B.L., Miskovsky, N.M., Cutler, P.H.: Simulations of infrared and optical rectification by geometrically asymmetric metal-vacuum-metal junctions for applications in energy conversion devices. Nanotechnology 21, 145204 (8 pp) (2010)
30.
Zurück zum Zitat Mayer, A., Chung, M.S., Weiss, B.L., Miskovsky, N.M., Cutler, P.H.: Three-dimensional analysis of the rectifying properties of geometrically asymmetric metal-vacuum-metal junctions treated as an oscillating barrier. Phys. Rev. B 78, 205404 (13 pp) (2008) Mayer, A., Chung, M.S., Weiss, B.L., Miskovsky, N.M., Cutler, P.H.: Three-dimensional analysis of the rectifying properties of geometrically asymmetric metal-vacuum-metal junctions treated as an oscillating barrier. Phys. Rev. B 78, 205404 (13 pp) (2008)
31.
Zurück zum Zitat Dagenais, M., Choi, K., Yesilkoy, F., Chryssis, A.N., Peckerar, M.C.: Solar spectrum rectification using nano-antennas and tunneling diodes. Proc. SPIE 7605, 76050E-2–76050E-12 (2010) Dagenais, M., Choi, K., Yesilkoy, F., Chryssis, A.N., Peckerar, M.C.: Solar spectrum rectification using nano-antennas and tunneling diodes. Proc. SPIE 7605, 76050E-2–76050E-12 (2010)
32.
Zurück zum Zitat Balocco, C., Kasjoo, S.R., Lu, X.F., Zhang, L.Q., Alimi, Y., Winnerl, S., Song, A.M.: Room-temperature operation of a unipolar nanodiode at terahertz frequencies. Appl. Phys. Lett. 98, 223501 (3 pp) (2011) Balocco, C., Kasjoo, S.R., Lu, X.F., Zhang, L.Q., Alimi, Y., Winnerl, S., Song, A.M.: Room-temperature operation of a unipolar nanodiode at terahertz frequencies. Appl. Phys. Lett. 98, 223501 (3 pp) (2011)
33.
Zurück zum Zitat Xu, K.Y., Lu, X.F., Song, A.M., Wang, G.: Terahertz harmonic generation using a planar nanoscale unipolar diode at zero bias. Appl. Phys. Lett. 92, 163503 (3 pp) (2008) Xu, K.Y., Lu, X.F., Song, A.M., Wang, G.: Terahertz harmonic generation using a planar nanoscale unipolar diode at zero bias. Appl. Phys. Lett. 92, 163503 (3 pp) (2008)
34.
Zurück zum Zitat Song, A.M., Missous, M., Omling, P., Maximov, I., Seifert, W., Samuelson, L.: Nanometer-scale two-terminal semiconductor memory operating at room temperature. Appl. Phys. Lett. 86, 042106 (3 pp) (2005) Song, A.M., Missous, M., Omling, P., Maximov, I., Seifert, W., Samuelson, L.: Nanometer-scale two-terminal semiconductor memory operating at room temperature. Appl. Phys. Lett. 86, 042106 (3 pp) (2005)
35.
Zurück zum Zitat Grover, S., Dmitriyeva, O., Estes, M.J., Moddel, G.: Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotechn. 9(6), 716–722 (2010)CrossRef Grover, S., Dmitriyeva, O., Estes, M.J., Moddel, G.: Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotechn. 9(6), 716–722 (2010)CrossRef
36.
Zurück zum Zitat Grover, S., Moddel, G.: Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers. Solid-State Electron. 67, 94–99 (2012)CrossRef Grover, S., Moddel, G.: Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers. Solid-State Electron. 67, 94–99 (2012)CrossRef
37.
Zurück zum Zitat Luo, Y., Lei, D.Y., Maier, S.A., Pendry, J.B.: Broadband light harvesting nanostructures robust to edge bluntness. Phys. Rev. Lett. 108, 023901 (5 pp) (2012) Luo, Y., Lei, D.Y., Maier, S.A., Pendry, J.B.: Broadband light harvesting nanostructures robust to edge bluntness. Phys. Rev. Lett. 108, 023901 (5 pp) (2012)
38.
Zurück zum Zitat Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J.: Photodetection with active optical antennas. Science 332, 702–704 (2011)CrossRef Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J.: Photodetection with active optical antennas. Science 332, 702–704 (2011)CrossRef
39.
Zurück zum Zitat Wang, F., Melosh, N.A.: Plasmonic energy collection through hot carrier extraction. Nano Lett. 11, 5426–5430 (2011)CrossRef Wang, F., Melosh, N.A.: Plasmonic energy collection through hot carrier extraction. Nano Lett. 11, 5426–5430 (2011)CrossRef
41.
Zurück zum Zitat Joshi, S., Zhu, Z., Grover, S., Moddel, G.: Infrared optical response of geometric diode rectenna solar cells. In: IEEE PVSC Conference, pp. 002976–002978 (2011) Joshi, S., Zhu, Z., Grover, S., Moddel, G.: Infrared optical response of geometric diode rectenna solar cells. In: IEEE PVSC Conference, pp. 002976–002978 (2011)
42.
Zurück zum Zitat Zhu, Z., Grover, S., Krueger, K., Moddel, G.: Optical rectenna solar cells using graphene geometric diodes. In: IEEE PVSC Conference, pp. 002120–002122 (2011) Zhu, Z., Grover, S., Krueger, K., Moddel, G.: Optical rectenna solar cells using graphene geometric diodes. In: IEEE PVSC Conference, pp. 002120–002122 (2011)
43.
Zurück zum Zitat Zhu, Z., Joshi, S., Grover, S., Moddel, G.: Graphene geometric diodes for terahertz rectennas. J. Phys. D: Appl. Phys. 46, 185101 (6 pp) (2013) Zhu, Z., Joshi, S., Grover, S., Moddel, G.: Graphene geometric diodes for terahertz rectennas. J. Phys. D: Appl. Phys. 46, 185101 (6 pp) (2013)
45.
Zurück zum Zitat Auston, D.H., Cheung, K.P., Smith, P.R.: Picosecond Photoconducting Hertzian Dipoles. Appl. Phys. Lett. 45, 284–286 (1984)CrossRef Auston, D.H., Cheung, K.P., Smith, P.R.: Picosecond Photoconducting Hertzian Dipoles. Appl. Phys. Lett. 45, 284–286 (1984)CrossRef
46.
Zurück zum Zitat Shen, Y.C., Upadhya, P.C., Linfield, E.H., Beere, H.E., Davies, A.G.: Ultrabroadband terahertz radiations from GaAs photoconductive emitters. Appl. Phys. Lett. 83, 3117–19 (2003)CrossRef Shen, Y.C., Upadhya, P.C., Linfield, E.H., Beere, H.E., Davies, A.G.: Ultrabroadband terahertz radiations from GaAs photoconductive emitters. Appl. Phys. Lett. 83, 3117–19 (2003)CrossRef
47.
Zurück zum Zitat Shen, Y.C., Upadhya, P.C., Beere, H.E., Linfield, E.H., Davies, A.G., Gregory, I.S., Baker, C., Tribe, W.R., Evans, M.J.: Generation and detection of ultrabroadband terahertz radiation with photoconductive emitter and receiver antennas. Appl. Phys. Lett. 85, 164–166 (2004)CrossRef Shen, Y.C., Upadhya, P.C., Beere, H.E., Linfield, E.H., Davies, A.G., Gregory, I.S., Baker, C., Tribe, W.R., Evans, M.J.: Generation and detection of ultrabroadband terahertz radiation with photoconductive emitter and receiver antennas. Appl. Phys. Lett. 85, 164–166 (2004)CrossRef
48.
Zurück zum Zitat Shen, Y.C., Jin, B.B.: Terahertz applications in pharmaceutical industry and science. In: Saeedkia, D. (ed.) Handbook of terahertz technology for imaging, sensing and communications, pp. 579–614. Woodhead Publishing Ltd, Cambridge (2013) (ISBN-10: 0857092359) Shen, Y.C., Jin, B.B.: Terahertz applications in pharmaceutical industry and science. In: Saeedkia, D. (ed.) Handbook of terahertz technology for imaging, sensing and communications, pp. 579–614. Woodhead Publishing Ltd, Cambridge (2013) (ISBN-10: 0857092359)
49.
Zurück zum Zitat Ordal, M.A., Bell, R.J., Alexander, R.W., Long, L.L., Querry, M.R.: Optical properties of fourteen metals in the infrared and far infrared: Al Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)CrossRef Ordal, M.A., Bell, R.J., Alexander, R.W., Long, L.L., Querry, M.R.: Optical properties of fourteen metals in the infrared and far infrared: Al Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)CrossRef
50.
Zurück zum Zitat Shen, Y.C., Zhang, S.Y., Jiang, Y.S., Zhu, R., Wei, Y.: Angular resonance absorption spectra of Langmuir-Blodgett films studied by the photoacoustic technique. Thin Solid Films 248, 36–40 (1994)CrossRef Shen, Y.C., Zhang, S.Y., Jiang, Y.S., Zhu, R., Wei, Y.: Angular resonance absorption spectra of Langmuir-Blodgett films studied by the photoacoustic technique. Thin Solid Films 248, 36–40 (1994)CrossRef
51.
Zurück zum Zitat Shen, Y.C., Upadhya, P.C., Linfield, E.H., Beere, H.E., Davies, A.G.: Terahertz generation from coherent optical phonons in a biased GaAs photoconductive emitter. Phys. Rev. B 69, 235325 (2004)CrossRef Shen, Y.C., Upadhya, P.C., Linfield, E.H., Beere, H.E., Davies, A.G.: Terahertz generation from coherent optical phonons in a biased GaAs photoconductive emitter. Phys. Rev. B 69, 235325 (2004)CrossRef
52.
Zurück zum Zitat Huang, Y., Hall, S., Shen, Y.C.: A novel rectenna for solar energy harvesting British Patent, GB1017401.9 (2010) Huang, Y., Hall, S., Shen, Y.C.: A novel rectenna for solar energy harvesting British Patent, GB1017401.9 (2010)
53.
Zurück zum Zitat Li, D., Huang, Y., Shen, Y.C.: Effects of Substrate on Photoconductive THz Antennas. IEEE iWAT2010, Lisbon (2010) Li, D., Huang, Y., Shen, Y.C.: Effects of Substrate on Photoconductive THz Antennas. IEEE iWAT2010, Lisbon (2010)
54.
Zurück zum Zitat Sedghi, N., Zhang, J. W., Ralph, J. F., Huang, Y., Mitrovic, I. Z., and Hall, S.: Towards rectennas for solar energy harvesting. Proc. 43rd ESSDERC, 131--134, Bucharest, Romania (2013) Sedghi, N., Zhang, J. W., Ralph, J. F., Huang, Y., Mitrovic, I. Z., and Hall, S.: Towards rectennas for solar energy harvesting. Proc. 43rd ESSDERC, 131--134, Bucharest, Romania (2013)
55.
Zurück zum Zitat Engström, O., Raeissi, B., Hall, S., Buiu, O., Lemme, M.C., Gottlob, H.D.B., Hurley, P.K., Cherkaoui, K.: Navigation aids in the search for future high-k dielectrics: physical and electrical trends. Solid-State Electron. 51, 622–626 (2007)CrossRef Engström, O., Raeissi, B., Hall, S., Buiu, O., Lemme, M.C., Gottlob, H.D.B., Hurley, P.K., Cherkaoui, K.: Navigation aids in the search for future high-k dielectrics: physical and electrical trends. Solid-State Electron. 51, 622–626 (2007)CrossRef
56.
Zurück zum Zitat Tucker, J.R., Millea, M.F.: Photon detection in nonlinear tunneling devices. Appl. Phys. Lett. 33, 611–613 (1978)CrossRef Tucker, J.R., Millea, M.F.: Photon detection in nonlinear tunneling devices. Appl. Phys. Lett. 33, 611–613 (1978)CrossRef
57.
Zurück zum Zitat Joshi, S., Moddel, G.: Efficiency limits of rectenna solar cells: theory of broadband photon-assisted tunnelling. Appl. Phys. Lett. 102, 083901-1–5 (2013)CrossRef Joshi, S., Moddel, G.: Efficiency limits of rectenna solar cells: theory of broadband photon-assisted tunnelling. Appl. Phys. Lett. 102, 083901-1–5 (2013)CrossRef
58.
Zurück zum Zitat Grover, S., Joshi, S., Moddel, G.: Quantum theory of operation for rectenna solar cells. J. Phys. D Appl. Phys. 46, 135106-1–7 (2013)CrossRef Grover, S., Joshi, S., Moddel, G.: Quantum theory of operation for rectenna solar cells. J. Phys. D Appl. Phys. 46, 135106-1–7 (2013)CrossRef
59.
Zurück zum Zitat Ghatak, A.K., Thyagarajan, K., Shenoy, M.R.: A novel numerical technique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures. IEEE J. Quant. Electron. 24, 1524–1531 (1988)CrossRef Ghatak, A.K., Thyagarajan, K., Shenoy, M.R.: A novel numerical technique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures. IEEE J. Quant. Electron. 24, 1524–1531 (1988)CrossRef
60.
Zurück zum Zitat Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)CrossRef Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)CrossRef
61.
Zurück zum Zitat Lent, C.S., Kirkner, D.J.: The quantum transmitting boundary method. J. Appl. Phys. 67, 6353–6359 (1990)CrossRef Lent, C.S., Kirkner, D.J.: The quantum transmitting boundary method. J. Appl. Phys. 67, 6353–6359 (1990)CrossRef
Metadaten
Titel
Energy Harvesting Using THz Electronics
verfasst von
Stephen Hall
Ivona Z. Mitrovic
Naser Sedghi
Yao-chun C. Shen
Yi Huang
Jason F. Ralph
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-08804-4_12

Neuer Inhalt