Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

Energy Release Rate Evaluation of Bi-material Interface Cracks

verfasst von: M. Prajwal, K. B. Yogesha, Kalmeshwar Ullegaddi, K. G. Basava Kumar

Erschienen in: Advances in Lightweight Materials and Structures

Verlag: Springer Singapore

share
TEILEN

Abstract

Fracture analysis of crack growth in between two material interfaces (different engineering materials) is one of the challenging tasks in the engineering field. In the present investigation, different properties of bi-material are considering to study the damage-tolerant design and analysis of fracture mechanics. A double cantilever beam (DCB) with a bi-material crack is considered for analysis. In FEM, specifically a post-processing command virtual crack closure technique (VCCT) is used for evaluation of mixed mode energy release rate of bi-material interface cracks. Validation of obtained results is done with a benchmark problem in the literature. Then parametric studies have been conducted on four different material combinations for a range of crack length and height of the beam. The results generated will be useful for assessing structural integrity.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30:79–102 Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30:79–102
2.
Zurück zum Zitat Kumar P (2009) Elements of Fracture Mechanics. McGraw-Hill, New Delhi Kumar P (2009) Elements of Fracture Mechanics. McGraw-Hill, New Delhi
3.
Zurück zum Zitat Krueger R (2004) Virtual crack closure technique: History, approach, and applications. Appl Mechan Rev 57(2):109–143 Krueger R (2004) Virtual crack closure technique: History, approach, and applications. Appl Mechan Rev 57(2):109–143
4.
Zurück zum Zitat Liu PF, Hou SJ, Chu JK, Liu YL, Zhou CL, Zeng JY, Yan L, Zhao A, Hu XY (2011) Finite element analysis of post-buckling and delamination of composite laminates using virtual crack closure technique. Compos Struct 93:1549–1560 Liu PF, Hou SJ, Chu JK, Liu YL, Zhou CL, Zeng JY, Yan L, Zhao A, Hu XY (2011) Finite element analysis of post-buckling and delamination of composite laminates using virtual crack closure technique. Compos Struct 93:1549–1560
5.
Zurück zum Zitat Orifici AC, Krueger R (2010) Assessment of static delamination propagation capabilities in commercial finite element codes using benchmark analysis. NIA Report, NASA/CR-2010–216709, June-2010 Orifici AC, Krueger R (2010) Assessment of static delamination propagation capabilities in commercial finite element codes using benchmark analysis. NIA Report, NASA/CR-2010–216709, June-2010
6.
Zurück zum Zitat Horst G (1985) Delorenzi, energy release rate calculations by the finite element method. Eng Fract Mech 21(1):129–143 Horst G (1985) Delorenzi, energy release rate calculations by the finite element method. Eng Fract Mech 21(1):129–143
7.
Zurück zum Zitat Fan C, Jar B, Roger Cheng JJ (2007) Prediction of energy release rates for crack growth using FEM-based energy derivative technique. Eng Fract Mechan 74:1243–1254 Fan C, Jar B, Roger Cheng JJ (2007) Prediction of energy release rates for crack growth using FEM-based energy derivative technique. Eng Fract Mechan 74:1243–1254
8.
Zurück zum Zitat Xie D, Biggers Jr SB (2006) Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Eng Fract Mechan 73:771–785 Xie D, Biggers Jr SB (2006) Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Eng Fract Mechan 73:771–785
9.
Zurück zum Zitat Krueger R, Goetze D (2006) Influence of finite element software on energy release rates computed using the virtual crack closure technique, NIA Report, NASA/CR-2006-214523, October 2006 Krueger R, Goetze D (2006) Influence of finite element software on energy release rates computed using the virtual crack closure technique, NIA Report, NASA/CR-2006-214523, October 2006
10.
Zurück zum Zitat Lakshminarayana HV, Bernard M, Bui-Quoc T (1992) A finite element study of interlaminar fracture in composite material. In: Proceedings of international conference on fracture mechanics Lakshminarayana HV, Bernard M, Bui-Quoc T (1992) A finite element study of interlaminar fracture in composite material. In: Proceedings of international conference on fracture mechanics
11.
Zurück zum Zitat ABAQUS analysis, user’s manual, vol 3, Version 6.10, Dassault Systemes Simulia Corp USA( 2010) ABAQUS analysis, user’s manual, vol 3, Version 6.10, Dassault Systemes Simulia Corp USA( 2010)
12.
Zurück zum Zitat Xie D, Biggers Jr SB (2006) Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elements Anal Des 42: 977–984 Xie D, Biggers Jr SB (2006) Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elements Anal Des 42: 977–984
13.
Zurück zum Zitat Leski A (2007) Implementation of the virtual crack closure technique in engineering FE calculations. Finite Elem Anal Des 43:261–268 Leski A (2007) Implementation of the virtual crack closure technique in engineering FE calculations. Finite Elem Anal Des 43:261–268
14.
Zurück zum Zitat Singh R, Goel S, Verma R, Jayaganthan R, Kumar A (2017) Mechanical behavior of 304 Austenitic stainless steel processed by room temperature rolling, materials science and engineering, vol 330. International conference on recent advances in materials, mechanical and civil engineering 1–2 June 2017, Hyderabad, India Singh R, Goel S, Verma R, Jayaganthan R, Kumar A (2017) Mechanical behavior of 304 Austenitic stainless steel processed by room temperature rolling, materials science and engineering, vol 330. International conference on recent advances in materials, mechanical and civil engineering 1–2 June 2017, Hyderabad, India
15.
Zurück zum Zitat Ambroziak A, Solarczyk M (2018) Application and mechanical properties of aluminium alloys. 10.1201/9781315166605-121 Ambroziak A, Solarczyk M (2018) Application and mechanical properties of aluminium alloys. 10.1201/9781315166605-121
16.
Zurück zum Zitat Chan R, Nakamura M (1969) Mechanical properties of plastic foams: the dependence of yield stress and modulus on the structural variables of closed-cell and open-cell foams. J Cell Plast 5(2):112–118 Chan R, Nakamura M (1969) Mechanical properties of plastic foams: the dependence of yield stress and modulus on the structural variables of closed-cell and open-cell foams. J Cell Plast 5(2):112–118
17.
Zurück zum Zitat Sudhakar KV, Wood E (2016) Superplastic grade titanium alloy: comparative evaluation of mechanical properties, microstructure, and fracture behavior, vol 2016, Article ID 2309232, p 7 Sudhakar KV, Wood E (2016) Superplastic grade titanium alloy: comparative evaluation of mechanical properties, microstructure, and fracture behavior, vol 2016, Article ID 2309232, p 7
Metadaten
Titel
Energy Release Rate Evaluation of Bi-material Interface Cracks
verfasst von
M. Prajwal
K. B. Yogesha
Kalmeshwar Ullegaddi
K. G. Basava Kumar
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7827-4_79

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.