Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 4/2016

24.12.2015

Energy storage properties and electrical behavior of lead-free (1 − x) Ba0.04Bi0.48Na0.48TiO3xSrZrO3 ceramics

verfasst von: Xingxing Zhou, Changlai Yuan, Qingning Li, Qin Feng, Changrong Zhou, Xiao Liu, Yun Yang, Guohua Chen

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

(1 − x) Ba0.04Bi0.48Na0.48TiO3xSrZrO3 (x = 0.08, 0.12, 0.15, 0.18 and 0.2, abbreviation as ‘BBNT-xSZ’) lead-free ceramics were synthesized by conventional solid-state reaction processes. Microstructures and electrical properties of BBNT-xSZ ceramics were investigated. XRD analysis reveals a pure perovskite phase without obvious phase transition with the addition of SZ. All BBNT-xSZ ceramics show high density and the grain sizes increase slightly with an increase of SZ concentration. Meanwhile, the energy storage density increases drastically, and a maximum value of 1.32 J/cm3 at E = 155 kV/cm is achieved in BBNT-0.15SZ through increasing greatly its breakdown strength with more SZ content. The temperature dependence of dielectric constant and dielectric loss of BBNT-xSZ ceramics illustrated the obvious relaxor phase transition characteristics. The BBNT-0.15SZ ceramic exhibits a high ionic conductivity accompanied by a low electronic conductivity. These properties support that (1 − x)Ba0.04Bi0.48Na0.48TiO3xSrZrO3 ceramics might be a promising lead-free material for high energy-storage capacitor application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X.F. Chen, X.L. Dong, G.S. Wang, F. Cao, Y.L. Wang, Doped Pb(Zr, Sn, Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application. Ferroelectrics 363, 56–63 (2008)CrossRef X.F. Chen, X.L. Dong, G.S. Wang, F. Cao, Y.L. Wang, Doped Pb(Zr, Sn, Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application. Ferroelectrics 363, 56–63 (2008)CrossRef
2.
Zurück zum Zitat Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRef Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRef
3.
Zurück zum Zitat J. Rodel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezo-ceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)CrossRef J. Rodel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezo-ceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)CrossRef
4.
Zurück zum Zitat T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRef T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRef
5.
Zurück zum Zitat A. Sasaki, T. Chiba, Y. Mamuya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564–5567 (1999)CrossRef A. Sasaki, T. Chiba, Y. Mamuya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564–5567 (1999)CrossRef
6.
Zurück zum Zitat T. Takenaka, K.I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRef T. Takenaka, K.I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRef
7.
Zurück zum Zitat S.-T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Am. Ceram. Soc. 91, 3950–3954 (2008)CrossRef S.-T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Am. Ceram. Soc. 91, 3950–3954 (2008)CrossRef
8.
Zurück zum Zitat Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Roles of lattice distortion in (1 − x)(Bi0.5Na0.5)TiO3–xBaTiO3 ceramics. Appl. Phys. Lett. 96, 202901 (2010)CrossRef Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Roles of lattice distortion in (1 − x)(Bi0.5Na0.5)TiO3–xBaTiO3 ceramics. Appl. Phys. Lett. 96, 202901 (2010)CrossRef
9.
Zurück zum Zitat S.T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Am. Ceram. Soc. 91, 3950–3954 (2008)CrossRef S.T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Am. Ceram. Soc. 91, 3950–3954 (2008)CrossRef
10.
Zurück zum Zitat A.B. Kounga, S.-T. Zhang, W. Jo, T. Granzow, J. Rodel, Morphotropic phase boundaryin (1-x)Bi0.5Na0.5TiO3–xK0.5Na0.5NbO3 lead-free piezoceramics. Appl. Phys. Lett. 92, 222902–222903 (2008)CrossRef A.B. Kounga, S.-T. Zhang, W. Jo, T. Granzow, J. Rodel, Morphotropic phase boundaryin (1-x)Bi0.5Na0.5TiO3–xK0.5Na0.5NbO3 lead-free piezoceramics. Appl. Phys. Lett. 92, 222902–222903 (2008)CrossRef
11.
Zurück zum Zitat L.H. Luo, B.Y. Wang, X.J. Jiang, W.P. Li, Energy storage properties of (1 − x)(Bi0.5Na0.5)TiO3–xKNbO3 lead-free ceramics. J. Mater. Sci. 49, 1659–1665 (2014)CrossRef L.H. Luo, B.Y. Wang, X.J. Jiang, W.P. Li, Energy storage properties of (1 − x)(Bi0.5Na0.5)TiO3xKNbO3 lead-free ceramics. J. Mater. Sci. 49, 1659–1665 (2014)CrossRef
12.
Zurück zum Zitat Y.P. Huang, L.H. Luo, J. Wang, Q.H. Zuo, Y.J. Yao, W.P. Li, The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics. J. Appl. Phys. 118, 044101 (2015)CrossRef Y.P. Huang, L.H. Luo, J. Wang, Q.H. Zuo, Y.J. Yao, W.P. Li, The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics. J. Appl. Phys. 118, 044101 (2015)CrossRef
13.
Zurück zum Zitat C.L. Yuan, L.F. Meng, Y. Liu, C.R. Zhou, G.H. Chen, Q. Feng, G. Cheng, G.H. Rao, Microstructures and energy storage properties of Mn-doped 0.97Bi0.47Na0.47Ba0.06TiO3–0.03K0.5Na0.5NbO3 lead-free antiferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 15, 3559 (2015) C.L. Yuan, L.F. Meng, Y. Liu, C.R. Zhou, G.H. Chen, Q. Feng, G. Cheng, G.H. Rao, Microstructures and energy storage properties of Mn-doped 0.97Bi0.47Na0.47Ba0.06TiO3–0.03K0.5Na0.5NbO3 lead-free antiferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 15, 3559 (2015)
14.
Zurück zum Zitat Q. Feng, C.L. Yuan, X.Y. Liu, S.H. Wu, G.H. Chen, Q.N. Li, C.R. Zhou, J.W. Xu, F. Liu, Microstructures and energy-storage properties of (1 − x)(Na0.5Bi0.5)TiO3–xBaTiO3 with BaO–B2O3–SiO2 additions. J. Mater. Sci.: Mater. Electron. 26, 5113–5119 (2015) Q. Feng, C.L. Yuan, X.Y. Liu, S.H. Wu, G.H. Chen, Q.N. Li, C.R. Zhou, J.W. Xu, F. Liu, Microstructures and energy-storage properties of (1 − x)(Na0.5Bi0.5)TiO3–xBaTiO3 with BaO–B2O3–SiO2 additions. J. Mater. Sci.: Mater. Electron. 26, 5113–5119 (2015)
15.
Zurück zum Zitat A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564 (1999)CrossRef A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564 (1999)CrossRef
16.
Zurück zum Zitat K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 45, 4493–4496 (2006)CrossRef K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 45, 4493–4496 (2006)CrossRef
17.
Zurück zum Zitat W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C. Wu, Crystal structure, dielectric and ferroelectric properties of (Bi0.5Na0.5)TiO3–(Ba, Sr)TiO3 lead-free piezoelectric ceramics. J. Alloys Compd. 492, 307–312 (2010)CrossRef W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C. Wu, Crystal structure, dielectric and ferroelectric properties of (Bi0.5Na0.5)TiO3–(Ba, Sr)TiO3 lead-free piezoelectric ceramics. J. Alloys Compd. 492, 307–312 (2010)CrossRef
18.
Zurück zum Zitat W. Krauss, D. Schütz, F.A. Mautner, A. Feteira, K. Reichmann, Piezo- electric properties and phase transition temperatures of the solid solution of (1 − x)(Bi0.5Na0.5)TiO3–xSrTiO3. J. Eur. Ceram. Soc. 30, 1827–1832 (2010)CrossRef W. Krauss, D. Schütz, F.A. Mautner, A. Feteira, K. Reichmann, Piezo- electric properties and phase transition temperatures of the solid solution of (1 − x)(Bi0.5Na0.5)TiO3–xSrTiO3. J. Eur. Ceram. Soc. 30, 1827–1832 (2010)CrossRef
19.
Zurück zum Zitat B. Parija, S.K. Rout, L.S. Cavalcante, A.Z. Simões, S. Panigrahi, E. Longo, N.C. Batista, Structure, microstructure and dielectric properties of 100 − x(Na0.5Bi0.5)TiO3–x[SrTiO3] composites ceramics. Appl. Phys. A 109, 715–723 (2012)CrossRef B. Parija, S.K. Rout, L.S. Cavalcante, A.Z. Simões, S. Panigrahi, E. Longo, N.C. Batista, Structure, microstructure and dielectric properties of 100 − x(Na0.5Bi0.5)TiO3–x[SrTiO3] composites ceramics. Appl. Phys. A 109, 715–723 (2012)CrossRef
20.
Zurück zum Zitat M. Cernea, E. Andronescu, R. Radu, F. Fochi, C. Galassi, Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J. Alloy. Compd. 490, 690–694 (2010)CrossRef M. Cernea, E. Andronescu, R. Radu, F. Fochi, C. Galassi, Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J. Alloy. Compd. 490, 690–694 (2010)CrossRef
21.
Zurück zum Zitat X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.J. Kleebe, J. Rodel, Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics. J. Appl. Phys. 106, 044107 (2009)CrossRef X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.J. Kleebe, J. Rodel, Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics. J. Appl. Phys. 106, 044107 (2009)CrossRef
22.
Zurück zum Zitat A. Ahtee, M. Ahtee, A. Glazer, A. Hewat, The structure of orthorhombic SrZrO3 by neutron powder diffraction. Acta Crystallogr. B 32, 3243–3246 (1976)CrossRef A. Ahtee, M. Ahtee, A. Glazer, A. Hewat, The structure of orthorhombic SrZrO3 by neutron powder diffraction. Acta Crystallogr. B 32, 3243–3246 (1976)CrossRef
23.
Zurück zum Zitat M. Chandrasekhar, P. Kumar, Synthesis and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications. Ceram. Int. 41, 5574–5580 (2015)CrossRef M. Chandrasekhar, P. Kumar, Synthesis and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications. Ceram. Int. 41, 5574–5580 (2015)CrossRef
24.
Zurück zum Zitat T.M. Correia, M. McMillen, M.K. Rokosz, M.G. John, V. Giuseppe, G.C. Markys, A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 96, 2699–2702 (2013)CrossRef T.M. Correia, M. McMillen, M.K. Rokosz, M.G. John, V. Giuseppe, G.C. Markys, A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 96, 2699–2702 (2013)CrossRef
25.
Zurück zum Zitat W. Jo, E. Erdem, R.A. Eichel, J. Glaum, T. Granzow, D. Damjanovic, J. Rodel, Effect of Nb-donor and Fe-acceptor dopants in (Bi1/2Na1/2)TiO3–BaTiO3– (K0.5Na0.5)NbO3 lead-free piezoceramics. J. Appl. Phys. 108, 014110 (2010)CrossRef W. Jo, E. Erdem, R.A. Eichel, J. Glaum, T. Granzow, D. Damjanovic, J. Rodel, Effect of Nb-donor and Fe-acceptor dopants in (Bi1/2Na1/2)TiO3–BaTiO3– (K0.5Na0.5)NbO3 lead-free piezoceramics. J. Appl. Phys. 108, 014110 (2010)CrossRef
26.
Zurück zum Zitat F. Ni, L.H. Luo, W.P. Li, H.B. Chen, A-site vacancy-induced giant strain and the electrical properties in non-stoichiometric ceramics Bi0.5+x (Na1−y Ky)0.5−3x TiO3. J. Phys. D Appl. Phys. 45, 415103 (2012)CrossRef F. Ni, L.H. Luo, W.P. Li, H.B. Chen, A-site vacancy-induced giant strain and the electrical properties in non-stoichiometric ceramics Bi0.5+x (Na1−y Ky)0.5−3x TiO3. J. Phys. D Appl. Phys. 45, 415103 (2012)CrossRef
27.
Zurück zum Zitat C.G. Xu, D.M. Lin, K.W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10, 934–940 (2008)CrossRef C.G. Xu, D.M. Lin, K.W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10, 934–940 (2008)CrossRef
28.
Zurück zum Zitat K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493–4496 (2006)CrossRef K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493–4496 (2006)CrossRef
29.
Zurück zum Zitat X.J. Chou, J.W. Zhai, X. Yao, Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications. Mater. Chem. Phys. 109, 125–130 (2008)CrossRef X.J. Chou, J.W. Zhai, X. Yao, Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications. Mater. Chem. Phys. 109, 125–130 (2008)CrossRef
30.
Zurück zum Zitat L. Khemakhem, A. Kabadou, A. Maalej, A. BenSalah, New relaxor ceramic with composition BaTi1-x(Zn1/3Nb2/3)xO3. J. Alloys Compd. 452, 451–455 (2008)CrossRef L. Khemakhem, A. Kabadou, A. Maalej, A. BenSalah, New relaxor ceramic with composition BaTi1-x(Zn1/3Nb2/3)xO3. J. Alloys Compd. 452, 451–455 (2008)CrossRef
31.
Zurück zum Zitat D. Viehland, M. Wuttig, L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)CrossRef D. Viehland, M. Wuttig, L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)CrossRef
32.
Zurück zum Zitat W. Supattra, X.L. Tan, A. Supon, Y. Rattikorn, Dielectricand ferroelectric properties of fine grains Pb(In1/2Nb1/2)O3ePbTiO3 ceramics. J. Alloys Compd. 454, 331–339 (2008)CrossRef W. Supattra, X.L. Tan, A. Supon, Y. Rattikorn, Dielectricand ferroelectric properties of fine grains Pb(In1/2Nb1/2)O3ePbTiO3 ceramics. J. Alloys Compd. 454, 331–339 (2008)CrossRef
Metadaten
Titel
Energy storage properties and electrical behavior of lead-free (1 − x) Ba0.04Bi0.48Na0.48TiO3–xSrZrO3 ceramics
verfasst von
Xingxing Zhou
Changlai Yuan
Qingning Li
Qin Feng
Changrong Zhou
Xiao Liu
Yun Yang
Guohua Chen
Publikationsdatum
24.12.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 4/2016
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-4247-x

Weitere Artikel der Ausgabe 4/2016

Journal of Materials Science: Materials in Electronics 4/2016 Zur Ausgabe

Neuer Inhalt