Skip to main content

2017 | OriginalPaper | Buchkapitel

11. Energy Storage Systems

verfasst von : Wataru Sugimoto, Dai Mochizuki

Erschienen in: Inorganic Nanosheets and Nanosheet-Based Materials

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Oxide nanosheets prepared via chemical exfoliation of ion-exchangeable layered transition metal oxides composed of of Ru, Mn, Co, Ti, etc., are attracting increased interest as electrode materials for electrochemical energy storage devices such as supercapacitors and rechargeable batteries. This interest comes from the possibility of nanosheets affording high surface area and microstructural control. Supercapacitors, for example, store energy at the electrode/electrolyte interface. Thus, increasing the amount of electrified interface directly contributes to high capacitance and energy density. Controlling the micro-/meso-porosity of the electrode is also important in terms of power performance. Porous nanosheet electrodes have also been studied for battery applications, especially for high rate charge/discharging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Makino S, Ban T, Sugimoto W (2013) Electrochemical capacitor behavior of RuO2 nanosheets in buffered solution and its application to hybrid capacitor. Electrochemistry 81(10):795–797CrossRef Makino S, Ban T, Sugimoto W (2013) Electrochemical capacitor behavior of RuO2 nanosheets in buffered solution and its application to hybrid capacitor. Electrochemistry 81(10):795–797CrossRef
2.
Zurück zum Zitat Deng L, Wang J, Zhu G, Kang L, Hao Z, Lei Z, Yang Z, Liu ZH (2014) RuO2/graphene hybrid material for high performance electrochemical capacitor. J Power Sources 248:407–415CrossRef Deng L, Wang J, Zhu G, Kang L, Hao Z, Lei Z, Yang Z, Liu ZH (2014) RuO2/graphene hybrid material for high performance electrochemical capacitor. J Power Sources 248:407–415CrossRef
3.
Zurück zum Zitat Makino S, Shinohara Y, Ban T, Shimizu W, Takahashi K, Imanishi N, Sugimoto W (2012) 4 V class aqueous hybrid electrochemical capacitor with battery-like capacity. RSC Adv 2(32):12144–12147CrossRef Makino S, Shinohara Y, Ban T, Shimizu W, Takahashi K, Imanishi N, Sugimoto W (2012) 4 V class aqueous hybrid electrochemical capacitor with battery-like capacity. RSC Adv 2(32):12144–12147CrossRef
4.
Zurück zum Zitat Sugimoto W, Yokoshima K, Murakami Y, Takasu Y (2006) Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim Acta 52(4):1742–1748CrossRef Sugimoto W, Yokoshima K, Murakami Y, Takasu Y (2006) Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim Acta 52(4):1742–1748CrossRef
5.
Zurück zum Zitat Song MMS, Lee KMKM, Lee YRYR, Kim IYIY, Kim TWTW, Gunjakar JLJL, Hwang SSJ (2010) Porously assembled 2D nanosheets of alkali metal manganese oxides with highly reversible pseudocapacitance behaviors. J Phys Chem C 114(50):22134–22140CrossRef Song MMS, Lee KMKM, Lee YRYR, Kim IYIY, Kim TWTW, Gunjakar JLJL, Hwang SSJ (2010) Porously assembled 2D nanosheets of alkali metal manganese oxides with highly reversible pseudocapacitance behaviors. J Phys Chem C 114(50):22134–22140CrossRef
6.
Zurück zum Zitat Zheng H, Tang F, Jia Y, Wang L, Chen Y, Lim M, Zhang L, (Max) Lu G (2009) Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube. Carbon N.Y. 47(6):1534–1542 Zheng H, Tang F, Jia Y, Wang L, Chen Y, Lim M, Zhang L, (Max) Lu G (2009) Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube. Carbon N.Y. 47(6):1534–1542
7.
Zurück zum Zitat Takei T, Yonesaki Y, Kumada N, Kinomura N (2008) Anodic electrodeposition of redoxable film from manganese oxide nanosheet. J Ceram Soc Japan 116(11):1222–1227CrossRef Takei T, Yonesaki Y, Kumada N, Kinomura N (2008) Anodic electrodeposition of redoxable film from manganese oxide nanosheet. J Ceram Soc Japan 116(11):1222–1227CrossRef
8.
Zurück zum Zitat Wang Y, Yang W, Chen C, Evans DG (2008) Fabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodes. J Power Sources 184:682–690CrossRef Wang Y, Yang W, Chen C, Evans DG (2008) Fabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodes. J Power Sources 184:682–690CrossRef
9.
Zurück zum Zitat Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211CrossRef Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211CrossRef
10.
Zurück zum Zitat Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614CrossRef Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614CrossRef
11.
Zurück zum Zitat Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y (2003) Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew Chem Int Ed Engl 42(34):4092–4096CrossRef Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y (2003) Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew Chem Int Ed Engl 42(34):4092–4096CrossRef
12.
Zurück zum Zitat Fukuda K, Saida T, Sato J, Yonezawa M, Takasu Y, Sugimoto W (2010) Synthesis of nanosheet crystallites of ruthenate with an alpha-NaFeO2-related structure and its electrochemical supercapacitor property. Inorg Chem 49(10):4391–4393CrossRef Fukuda K, Saida T, Sato J, Yonezawa M, Takasu Y, Sugimoto W (2010) Synthesis of nanosheet crystallites of ruthenate with an alpha-NaFeO2-related structure and its electrochemical supercapacitor property. Inorg Chem 49(10):4391–4393CrossRef
13.
Zurück zum Zitat Sugimoto W, Iwata H, Murakami Y, Takasu Y (2004) Electrochemical capacitor behavior of layered ruthenic acid hydrate. J Electrochem Soc 151(8):A1181–A1187CrossRef Sugimoto W, Iwata H, Murakami Y, Takasu Y (2004) Electrochemical capacitor behavior of layered ruthenic acid hydrate. J Electrochem Soc 151(8):A1181–A1187CrossRef
14.
Zurück zum Zitat Makino S, Ban T, Sugimoto W (2015) Towards implantable bio-supercapacitors: pseudocapacitance of ruthenium oxide nanoparticles and nanosheets in acids, buffered solutions, and bioelectrolytes. J Electrochem Soc 162(5):A5001–A5006CrossRef Makino S, Ban T, Sugimoto W (2015) Towards implantable bio-supercapacitors: pseudocapacitance of ruthenium oxide nanoparticles and nanosheets in acids, buffered solutions, and bioelectrolytes. J Electrochem Soc 162(5):A5001–A5006CrossRef
15.
Zurück zum Zitat Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J Phys Chem B 109(15):7330–7338CrossRef Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J Phys Chem B 109(15):7330–7338CrossRef
16.
Zurück zum Zitat Sugimoto W, Ohta T, Yokoshima K, Takasu Y (2007) Evaluation of the redox behavior of hydrous ruthenium oxides: effect of temperature and acid concentration on the electrochemical behavior of layered ruthenium oxide. Electrochemistry 75(8):645–648CrossRef Sugimoto W, Ohta T, Yokoshima K, Takasu Y (2007) Evaluation of the redox behavior of hydrous ruthenium oxides: effect of temperature and acid concentration on the electrochemical behavior of layered ruthenium oxide. Electrochemistry 75(8):645–648CrossRef
17.
Zurück zum Zitat Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochim Acta 49(2):313–320CrossRef Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochim Acta 49(2):313–320CrossRef
18.
Zurück zum Zitat Dmowski W, Egami T, Swider-Lyons KE, Love CT, Rolison DR (2002) Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J Phys Chem B 106(49):12677–12683CrossRef Dmowski W, Egami T, Swider-Lyons KE, Love CT, Rolison DR (2002) Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J Phys Chem B 106(49):12677–12683CrossRef
19.
Zurück zum Zitat McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KE, Rolison DR (1999) Structure of hydrous ruthenium oxides: implications for charge storage. J Phys Chem B 103(23):4825–4832CrossRef McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KE, Rolison DR (1999) Structure of hydrous ruthenium oxides: implications for charge storage. J Phys Chem B 103(23):4825–4832CrossRef
20.
Zurück zum Zitat Ma Z, Zheng JP, Fu R (2000) Solid state NMR investigation of hydrous ruthenium oxide. Chem Phys Lett 331(1):64–70CrossRef Ma Z, Zheng JP, Fu R (2000) Solid state NMR investigation of hydrous ruthenium oxide. Chem Phys Lett 331(1):64–70CrossRef
21.
Zurück zum Zitat Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J Phys Chem B 109(15):7330–7338CrossRef Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J Phys Chem B 109(15):7330–7338CrossRef
22.
Zurück zum Zitat Sato J, Kato H, Kimura M, Fukuda K, Sugimoto W (2010) Conductivity of ruthenate nanosheets prepared via electrostatic self-assembly: characterization of isolated single nanosheet crystallite to mono- and multilayer electrodes. Langmuir 26(23):18049–18054CrossRef Sato J, Kato H, Kimura M, Fukuda K, Sugimoto W (2010) Conductivity of ruthenate nanosheets prepared via electrostatic self-assembly: characterization of isolated single nanosheet crystallite to mono- and multilayer electrodes. Langmuir 26(23):18049–18054CrossRef
23.
Zurück zum Zitat Arnold CB, Wartena RC, Swider-Lyons KE, Pique A (2003) Direct-write planar microultracapacitors by laser engineering. J Electrochem Soc 150(5):A571–A575CrossRef Arnold CB, Wartena RC, Swider-Lyons KE, Pique A (2003) Direct-write planar microultracapacitors by laser engineering. J Electrochem Soc 150(5):A571–A575CrossRef
24.
Zurück zum Zitat Sugimoto W, Yokoshima K, Ohuchi K, Murakami Y, Takasu Y (2006) Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors. J Electrochem Soc 153(2):A255–A260CrossRef Sugimoto W, Yokoshima K, Ohuchi K, Murakami Y, Takasu Y (2006) Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors. J Electrochem Soc 153(2):A255–A260CrossRef
25.
Zurück zum Zitat Jang H, Suzuki S, Miyayama M (2012) Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution. J Electrochem Soc 159(9):A1425–A1430CrossRef Jang H, Suzuki S, Miyayama M (2012) Self-reassembled MnO2 nanosheets for electrochemical capacitors in neutral aqueous solution. J Electrochem Soc 159(9):A1425–A1430CrossRef
26.
Zurück zum Zitat Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223CrossRef Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223CrossRef
27.
Zurück zum Zitat Lee HY, Manivannan V, Goodenough JB (1999) Electrochemical capacitors with KCl electrolyte. C.R. Acad Sci, Ser IIc: Chim 2(11–13):565–577 Lee HY, Manivannan V, Goodenough JB (1999) Electrochemical capacitors with KCl electrolyte. C.R. Acad Sci, Ser IIc: Chim 2(11–13):565–577
28.
Zurück zum Zitat Brousse T, Bélanger D, Chiba K, Egashira M, Favier F, Long J, Miller JR, Morita M, Naoi K, Simon P, Sugimoto W (2017) Materials for electrochemical Capacitors. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy, 1st edn. Springer, Berlin, Heidelberg, pp 495–561 Brousse T, Bélanger D, Chiba K, Egashira M, Favier F, Long J, Miller JR, Morita M, Naoi K,  Simon P, Sugimoto W (2017) Materials for electrochemical Capacitors. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy, 1st edn. Springer, Berlin, Heidelberg, pp 495–561
29.
Zurück zum Zitat Liu ZH, Ooi K, Kanoh H, Tang WP, Tomida T (2000) Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 16(9):4154–4164CrossRef Liu ZH, Ooi K, Kanoh H, Tang WP, Tomida T (2000) Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 16(9):4154–4164CrossRef
30.
Zurück zum Zitat Gao Q, Giraldo O, Tong W, Suib SL (2001) Preparation of nanometer-sized manganese oxides by intercalation of organic ammonium ions in synthetic birnessite OL-1. Chem Mater 13(3):778–786CrossRef Gao Q, Giraldo O, Tong W, Suib SL (2001) Preparation of nanometer-sized manganese oxides by intercalation of organic ammonium ions in synthetic birnessite OL-1. Chem Mater 13(3):778–786CrossRef
31.
Zurück zum Zitat Omomo Y, Sasaki T, Wang L, Watanabe M (2003) Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J Am Chem Soc 125(12):3568–3575CrossRef Omomo Y, Sasaki T, Wang L, Watanabe M (2003) Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J Am Chem Soc 125(12):3568–3575CrossRef
32.
Zurück zum Zitat Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Electrode properties and microstructures of MnO2 nanosheet thin films as cathodes for electrochemical capacitors. Solid State Ionics 233:32–37CrossRef Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Electrode properties and microstructures of MnO2 nanosheet thin films as cathodes for electrochemical capacitors. Solid State Ionics 233:32–37CrossRef
33.
Zurück zum Zitat Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Effects of microstructure on electrode properties of nanosheet-derived Hx(Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors. Nanomaterials 3:204–220CrossRef Yano M, Suzuki S, Miyayama M, Ohgaki M (2013) Effects of microstructure on electrode properties of nanosheet-derived Hx(Ni1/3Co1/3Mn1/3)O2 for electrochemical capacitors. Nanomaterials 3:204–220CrossRef
34.
Zurück zum Zitat Yuan J, Liu Z-H, Qiao S, Ma X, Xu N (2009) Fabrication of MnO2-pillared layered manganese oxide through an exfoliation/reassembling and oxidation process. J Power Sources 189(2):1278–1283CrossRef Yuan J, Liu Z-H, Qiao S, Ma X, Xu N (2009) Fabrication of MnO2-pillared layered manganese oxide through an exfoliation/reassembling and oxidation process. J Power Sources 189(2):1278–1283CrossRef
35.
Zurück zum Zitat Kai K, Kobayashi Y, Yamada Y, Miyazaki K, Abe T, Uchimoto Y, Kageyama H (2012) Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. J Mater Chem 22(29):14691-14695CrossRef Kai K, Kobayashi Y, Yamada Y, Miyazaki K, Abe T, Uchimoto Y, Kageyama H (2012) Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. J Mater Chem 22(29):14691-14695CrossRef
36.
Zurück zum Zitat Lee YR, Kim IY, Kim TW, Lee JM, Hwang S-J (2012) Mixed colloidal suspensions of reduced graphene oxide and layered metal oxide nanosheets: useful precursors for the porous nanocomposites and hybrid films of graphene/metal oxide. Chem Eur J 18(8):2263–2271CrossRef Lee YR, Kim IY, Kim TW, Lee JM, Hwang S-J (2012) Mixed colloidal suspensions of reduced graphene oxide and layered metal oxide nanosheets: useful precursors for the porous nanocomposites and hybrid films of graphene/metal oxide. Chem Eur J 18(8):2263–2271CrossRef
37.
Zurück zum Zitat Li Z, Wang J, Liu X, Liu S, Ou J, Yang S (2011) Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J Mater Chem 21(10):3397–3403CrossRef Li Z, Wang J, Liu X, Liu S, Ou J, Yang S (2011) Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J Mater Chem 21(10):3397–3403CrossRef
38.
Zurück zum Zitat Zhang X, Yang W, Evans DG (2008) Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors. J Power Sources 184:695–700CrossRef Zhang X, Yang W, Evans DG (2008) Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors. J Power Sources 184:695–700CrossRef
39.
Zurück zum Zitat Sakai N, Fukuda K, Omomo Y, Ebina Y, Takada K, Sasaki T (2008) Hetero-nanostructured films of titanium and manganese oxide nanosheets: photoinduced charge transfer and electrochemical properties. J Phys Chem C 112(13):5197–5202CrossRef Sakai N, Fukuda K, Omomo Y, Ebina Y, Takada K, Sasaki T (2008) Hetero-nanostructured films of titanium and manganese oxide nanosheets: photoinduced charge transfer and electrochemical properties. J Phys Chem C 112(13):5197–5202CrossRef
40.
Zurück zum Zitat Wang Y, Yang W, Yang J (2007) A Co–Al layered double hydroxides nanosheets thin-film electrode. Electrochem Solid-State Lett 10(10):A233-A236CrossRef Wang Y, Yang W, Yang J (2007) A Co–Al layered double hydroxides nanosheets thin-film electrode. Electrochem Solid-State Lett 10(10):A233-A236CrossRef
41.
Zurück zum Zitat Dong XX, Wang L, Wang D, Li C, Jin J (2011) Layer-by-Layer engineered Co–Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. Langmuir 28(1):293–298CrossRef Dong XX, Wang L, Wang D, Li C, Jin J (2011) Layer-by-Layer engineered Co–Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. Langmuir 28(1):293–298CrossRef
42.
Zurück zum Zitat Schneiderová B, Demel J, Pleštil J, Tarábková H, Bohuslav J, Lang K (2014) Electrochemical performance of cobalt hydroxide nanosheets formed by the delamination of layered cobalt hydroxide in water. Dalton Trans 43(27):10484–10491CrossRef Schneiderová B, Demel J, Pleštil J, Tarábková H, Bohuslav J, Lang K (2014) Electrochemical performance of cobalt hydroxide nanosheets formed by the delamination of layered cobalt hydroxide in water. Dalton Trans 43(27):10484–10491CrossRef
43.
Zurück zum Zitat Kijima N, Takahashi Y, Hayakawa H, Awaka J, Akimoto J (2008) Synthesis, characterization, and electrochemical properties of a thin flake titania fabricated from exfoliated nanosheets. J Phys Chem Solids 69(5–6):1447–1449CrossRef Kijima N, Takahashi Y, Hayakawa H, Awaka J, Akimoto J (2008) Synthesis, characterization, and electrochemical properties of a thin flake titania fabricated from exfoliated nanosheets. J Phys Chem Solids 69(5–6):1447–1449CrossRef
44.
Zurück zum Zitat Suzuki S, Miyayama M (2012) Electrochemical intercalation of lithium into thin film of stacked tetratitanate nanosheets fabricated by electrophoretic deposition. J Electrochem Soc 160(2):A293–A296CrossRef Suzuki S, Miyayama M (2012) Electrochemical intercalation of lithium into thin film of stacked tetratitanate nanosheets fabricated by electrophoretic deposition. J Electrochem Soc 160(2):A293–A296CrossRef
45.
Zurück zum Zitat Suzuki S, Miyayama M (2011) Ultra-thin film electrodes of tetratitanate nanosheets. Solid State Ionics 204–205:66–72CrossRef Suzuki S, Miyayama M (2011) Ultra-thin film electrodes of tetratitanate nanosheets. Solid State Ionics 204–205:66–72CrossRef
46.
Zurück zum Zitat Suzuki S, Miyayama M (2006) Lithium intercalation properties of octatitanate synthesized through exfoliation/reassembly. J Phys Chem B 110(10):4731–4734CrossRef Suzuki S, Miyayama M (2006) Lithium intercalation properties of octatitanate synthesized through exfoliation/reassembly. J Phys Chem B 110(10):4731–4734CrossRef
47.
Zurück zum Zitat Suzuki S, Miyayama M (2011) Microstructural controls of titanate nanosheet composites using carbon fibers and high-rate electrode properties for lithium ion secondary batteries. J Power Sources 196(4):2269–2273CrossRef Suzuki S, Miyayama M (2011) Microstructural controls of titanate nanosheet composites using carbon fibers and high-rate electrode properties for lithium ion secondary batteries. J Power Sources 196(4):2269–2273CrossRef
48.
Zurück zum Zitat Suzuki S, Miyayama M (2007) Lithium intercalation properties of reassembled titanate/carbon composites. J Electrochem Soc 154(5):A438-A443CrossRef Suzuki S, Miyayama M (2007) Lithium intercalation properties of reassembled titanate/carbon composites. J Electrochem Soc 154(5):A438-A443CrossRef
49.
Zurück zum Zitat Jang H, Suzuki S, Miyayama M (2012) Synthesis of open tunnel-structured TiO2(B) by nanosheets processes and its electrode properties for Li-ion secondary batteries. J Power Sources 203:97–102CrossRef Jang H, Suzuki S, Miyayama M (2012) Synthesis of open tunnel-structured TiO2(B) by nanosheets processes and its electrode properties for Li-ion secondary batteries. J Power Sources 203:97–102CrossRef
50.
Zurück zum Zitat Takada K, Kajiyama A, Onoda M, Michiue Y, Watanabe M, Sasaki T (2003) Synthesis of a Li–Mn-oxide with disordered layer stacking through flocculation of exfoliated MnO2 nanosheets, and its electrochemical properties. Chem Mater 15(23):4508–4514CrossRef Takada K, Kajiyama A, Onoda M, Michiue Y, Watanabe M, Sasaki T (2003) Synthesis of a Li–Mn-oxide with disordered layer stacking through flocculation of exfoliated MnO2 nanosheets, and its electrochemical properties. Chem Mater 15(23):4508–4514CrossRef
51.
Zurück zum Zitat Sakai N, Ebina Y, Takada K, Sasaki T (2005) Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations: fabrication, structure, and electrochemical behavior. Chem Mater 17(6):1352–1357CrossRef Sakai N, Ebina Y, Takada K, Sasaki T (2005) Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations: fabrication, structure, and electrochemical behavior. Chem Mater 17(6):1352–1357CrossRef
52.
Zurück zum Zitat Sugaya H, Fukuda K, Morita M, Murayama H, Matsubara E, Kume T, Uchimoto Y (2015) High-capacity lithium-ion storage system using unilamellar crystallites of exfoliated MoO2 nanosheets. Chem Lett 44(11):1595–1597CrossRef Sugaya H, Fukuda K, Morita M, Murayama H, Matsubara E, Kume T, Uchimoto Y (2015) High-capacity lithium-ion storage system using unilamellar crystallites of exfoliated MoO2 nanosheets. Chem Lett 44(11):1595–1597CrossRef
53.
Zurück zum Zitat Liao K, Wang X, Sun Y, Tang D, Han M, He P, Jiang X, Zhang T, Zhou H (2015) An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide. Energy Environ Sci 8(1):1992–1997CrossRef Liao K, Wang X, Sun Y, Tang D, Han M, He P, Jiang X, Zhang T, Zhou H (2015) An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide. Energy Environ Sci 8(1):1992–1997CrossRef
Metadaten
Titel
Energy Storage Systems
verfasst von
Wataru Sugimoto
Dai Mochizuki
Copyright-Jahr
2017
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56496-6_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.