Skip to main content

2019 | OriginalPaper | Buchkapitel

6. Engine Performance Analysis

verfasst von : Rakesh Kumar Maurya

Erschienen in: Reciprocating Engine Combustion Diagnostics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cylinder pressure-based combustion analysis provides a clear understanding of the combustion process by which engine performance improvements can be realized in an expedient and quantitative manner. Cylinder pressure-based combustion diagnostics can help to identify the performance-limiting componentry and can provide direction for the redesign of that componentry. However, effective analysis requires exacting care to be taken during engine instrumentation, data acquisition, and interpretation of results by processing experimental data. This chapter presents the methods for analysis of cylinder pressure data and discusses the interpretation of results in different graphical representations of measured data. Engine torque is one of the important factors that characterize the performance and running status of the engine. Indicated torque estimation methods based on cylinder pressure measurement are presented. Typical methods of monitoring engine performance are based on the indicated mean effective pressure (IMEP), and a large amount of research has been focused on ways to estimate IMEP from more easily measurable signals. This chapter describes offline and online (real-time) calculation of IMEP from indicating system based on commercially available hardware and software. Engine performance maps are discussed to explain the torque, power, and fuel consumption characteristics of the reciprocating engines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Randolph, A. L. (1994). Cylinder-pressure-based combustion analysis in race engines (No. 942487). SAE Technical Paper. Randolph, A. L. (1994). Cylinder-pressure-based combustion analysis in race engines (No. 942487). SAE Technical Paper.
2.
Zurück zum Zitat Brunt, M. F., & Pond, C. R. (1997). Evaluation of techniques for absolute cylinder pressure correction (No. 970036). SAE Technical Paper. Brunt, M. F., & Pond, C. R. (1997). Evaluation of techniques for absolute cylinder pressure correction (No. 970036). SAE Technical Paper.
3.
Zurück zum Zitat Gill, P. W. S., & Ziurys, J. (1959). Fundamentals of internal combustion engines. New Delhi: Oxford and IBH Publishing. Gill, P. W. S., & Ziurys, J. (1959). Fundamentals of internal combustion engines. New Delhi: Oxford and IBH Publishing.
4.
Zurück zum Zitat Kar, K., Cheng, W., & Ishii, K. (2009). Effects of ethanol content on gasohol PFI engine wide-open-throttle operation. SAE International Journal of Fuels and Lubricants, 2(1), 895–901.CrossRef Kar, K., Cheng, W., & Ishii, K. (2009). Effects of ethanol content on gasohol PFI engine wide-open-throttle operation. SAE International Journal of Fuels and Lubricants, 2(1), 895–901.CrossRef
5.
Zurück zum Zitat Heywood, J. B. (1988). Internal combustion engine fundamentals. New York: McGraw-Hill. Heywood, J. B. (1988). Internal combustion engine fundamentals. New York: McGraw-Hill.
6.
Zurück zum Zitat Crolla, D., & Mashadi, B. (2011). Vehicle powertrain systems. Chichester: Wiley. Crolla, D., & Mashadi, B. (2011). Vehicle powertrain systems. Chichester: Wiley.
7.
Zurück zum Zitat Mallik, A. K., & Ghosh, A. (2004). Theory of mechanism and machines. New Delhi: Affiliated East-West Press (P) Ltd. Mallik, A. K., & Ghosh, A. (2004). Theory of mechanism and machines. New Delhi: Affiliated East-West Press (P) Ltd.
8.
Zurück zum Zitat Van Basshuysen, R., & Schäfer, F. (2016). Internal combustion engine handbook-basics, components, systems and perspectives (2nd ed.). Warrendale: SAE International. Van Basshuysen, R., & Schäfer, F. (2016). Internal combustion engine handbook-basics, components, systems and perspectives (2nd ed.). Warrendale: SAE International.
9.
Zurück zum Zitat Hoag, K., & Dondlinger, B. (2016). Vehicular engine design. Vienna: Springer.CrossRef Hoag, K., & Dondlinger, B. (2016). Vehicular engine design. Vienna: Springer.CrossRef
10.
Zurück zum Zitat Lumley, J. L. (1999). Engines: An introduction. Cambridge: Cambridge University Press.CrossRef Lumley, J. L. (1999). Engines: An introduction. Cambridge: Cambridge University Press.CrossRef
11.
Zurück zum Zitat Park, S., & Sunwoo, M. (2003). Torque estimation of spark ignition engines via cylinder pressure measurement. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(9), 809–817. Park, S., & Sunwoo, M. (2003). Torque estimation of spark ignition engines via cylinder pressure measurement. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(9), 809–817.
12.
Zurück zum Zitat Pettersson, P. S., & Kjellin, A. (2017) Torque estimation from in-cylinder pressure sensor for closed loop torque control (Masters thesis). Chalmers University of Technology, Gothenburg, Sweden. Pettersson, P. S., & Kjellin, A. (2017) Torque estimation from in-cylinder pressure sensor for closed loop torque control (Masters thesis). Chalmers University of Technology, Gothenburg, Sweden.
13.
Zurück zum Zitat Rizzoni, G. (1989). Estimate of indicated torque from crankshaft speed fluctuations: A model for the dynamics of the IC engine. IEEE Transactions on Vehicular Technology, 38(3), 168–179.CrossRef Rizzoni, G. (1989). Estimate of indicated torque from crankshaft speed fluctuations: A model for the dynamics of the IC engine. IEEE Transactions on Vehicular Technology, 38(3), 168–179.CrossRef
14.
Zurück zum Zitat Rosvall, T., & Stenlaas, O. (2016). Torque estimation based virtual crank angle sensor (No. 2016-01-1073). SAE Technical Paper. Rosvall, T., & Stenlaas, O. (2016). Torque estimation based virtual crank angle sensor (No. 2016-01-1073). SAE Technical Paper.
15.
Zurück zum Zitat Ginoux, S., & Champoussin, J. C. (1997). Engine torque determination by crankangle measurements: State of the art, future prospects (no. 970532). SAE Technical Paper. Ginoux, S., & Champoussin, J. C. (1997). Engine torque determination by crankangle measurements: State of the art, future prospects (no. 970532). SAE Technical Paper.
16.
Zurück zum Zitat Lee, B., Rizzoni, G., Guezennec, Y., Soliman, A., Cavalletti, M., & Waters, J. (2001). Engine control using torque estimation. SAE Transactions, Paper no - 2001-01-0995, 869–881. Lee, B., Rizzoni, G., Guezennec, Y., Soliman, A., Cavalletti, M., & Waters, J. (2001). Engine control using torque estimation. SAE Transactions, Paper no - 2001-01-0995, 869–881.
17.
Zurück zum Zitat Iida, K., Akishino, K., & Kido, K. (1990). IMEP estimation from instantaneous crankshaft torque variation. SAE Transactions, Paper no - 900617, 1374–1385. Iida, K., Akishino, K., & Kido, K. (1990). IMEP estimation from instantaneous crankshaft torque variation. SAE Transactions, Paper no - 900617, 1374–1385.
18.
Zurück zum Zitat Pulkrabek, W. W. (2004). Engineering fundamentals of the internal combustion engine. Upper Saddle River, NJ: Pearson Prentice Hall. Pulkrabek, W. W. (2004). Engineering fundamentals of the internal combustion engine. Upper Saddle River, NJ: Pearson Prentice Hall.
19.
Zurück zum Zitat Maurya, R. K. (2018). Characteristics and control of low temperature combustion engines: Employing gasoline, ethanol and methanol. Cham: Springer.CrossRef Maurya, R. K. (2018). Characteristics and control of low temperature combustion engines: Employing gasoline, ethanol and methanol. Cham: Springer.CrossRef
20.
Zurück zum Zitat Brunt, M. F., & Emtage, A. L. (1996). Evaluation of IMEP routines and analysis errors. SAE Transactions, 960609, 749–763. Brunt, M. F., & Emtage, A. L. (1996). Evaluation of IMEP routines and analysis errors. SAE Transactions, 960609, 749–763.
21.
Zurück zum Zitat Rai, H. S., Brunt, M. F., & Loader, C. P. (1999). Quantification and reduction of IMEP errors resulting from pressure transducer thermal shock in an SI engine (No. 1999-01-1329). SAE Technical Paper. Rai, H. S., Brunt, M. F., & Loader, C. P. (1999). Quantification and reduction of IMEP errors resulting from pressure transducer thermal shock in an SI engine (No. 1999-01-1329). SAE Technical Paper.
22.
Zurück zum Zitat Arbuckle, J. S. (2006). Indicated mean effective pressure estimation with applications to adaptive calibration (PhD thesis). Michigan Technological University, Michigan, USA. Arbuckle, J. S. (2006). Indicated mean effective pressure estimation with applications to adaptive calibration (PhD thesis). Michigan Technological University, Michigan, USA.
23.
Zurück zum Zitat Hoard, J., & Rehagen, L. (1997). Relating subjective idle quality to engine combustion (No. 970035). SAE Technical Paper. Hoard, J., & Rehagen, L. (1997). Relating subjective idle quality to engine combustion (No. 970035). SAE Technical Paper.
24.
Zurück zum Zitat Hallgren, B. E., & Heywood, J. B. (2003). Effects of substantial spark retard on SI engine combustion and hydrocarbon emissions (No. 2003-01-3237). SAE Technical Paper. Hallgren, B. E., & Heywood, J. B. (2003). Effects of substantial spark retard on SI engine combustion and hydrocarbon emissions (No. 2003-01-3237). SAE Technical Paper.
25.
Zurück zum Zitat Nishida, K., Kaneko, T., Takahashi, Y., & Aoki, K. (2011). Estimation of indicated mean effective pressure using crankshaft angular velocity variation (No. 2011-32-0510). SAE Technical Paper. Nishida, K., Kaneko, T., Takahashi, Y., & Aoki, K. (2011). Estimation of indicated mean effective pressure using crankshaft angular velocity variation (No. 2011-32-0510). SAE Technical Paper.
26.
Zurück zum Zitat Hamedović, H., Raichle, F., Breuninger, J., Fischer, W., Fishcer, W., Dieterle, W., … Böhme, J. F. (2005). IMEP-estimation and in-cylinder pressure reconstruction for multicylinder SI-engine by combined processing of engine speed and one cylinder pressure. SAE Transactions, Paper no - 2005-01-0053, 135–142. Hamedović, H., Raichle, F., Breuninger, J., Fischer, W., Fishcer, W., Dieterle, W., … Böhme, J. F. (2005). IMEP-estimation and in-cylinder pressure reconstruction for multicylinder SI-engine by combined processing of engine speed and one cylinder pressure. SAE Transactions, Paper no - 2005-01-0053, 135–142.
27.
Zurück zum Zitat Jaine, T., Charlet, A., Higelin, P., & Chamaillard, Y. (2002). High frequency IMEP estimation and filtering for torque based SI engine control (No. 2002-01-1276). SAE Technical Paper. Jaine, T., Charlet, A., Higelin, P., & Chamaillard, Y. (2002). High frequency IMEP estimation and filtering for torque based SI engine control (No. 2002-01-1276). SAE Technical Paper.
28.
Zurück zum Zitat Oh, S., Kim, D., Kim, J., Oh, B., Lee, K., & Sunwoo, M. (2009). Real-time IMEP estimation for torque-based engine control using an in-cylinder pressure sensor (No. 2009-01-0244). SAE Technical Paper. Oh, S., Kim, D., Kim, J., Oh, B., Lee, K., & Sunwoo, M. (2009). Real-time IMEP estimation for torque-based engine control using an in-cylinder pressure sensor (No. 2009-01-0244). SAE Technical Paper.
29.
Zurück zum Zitat Corti, E., Moro, D., & Solieri, L. (2008). Measurement errors in real-time IMEP and ROHR evaluation (No. 2008-01-0980). SAE Technical Paper. Corti, E., Moro, D., & Solieri, L. (2008). Measurement errors in real-time IMEP and ROHR evaluation (No. 2008-01-0980). SAE Technical Paper.
30.
Zurück zum Zitat Taraza, D. (2000). A faster algorithm for the calculation of the IMEP (No. 2000-01-2916). SAE Technical Paper. Taraza, D. (2000). A faster algorithm for the calculation of the IMEP (No. 2000-01-2916). SAE Technical Paper.
31.
Zurück zum Zitat Oh, S., Kim, J., Oh, B., Lee, K., & Sunwoo, M. (2011). Real-time IMEP estimation and control using an in-cylinder pressure sensor for a common-rail direct injection diesel engine. Journal of Engineering for Gas Turbines and Power, 133(6), 062801.CrossRef Oh, S., Kim, J., Oh, B., Lee, K., & Sunwoo, M. (2011). Real-time IMEP estimation and control using an in-cylinder pressure sensor for a common-rail direct injection diesel engine. Journal of Engineering for Gas Turbines and Power, 133(6), 062801.CrossRef
32.
Zurück zum Zitat Saxena, S. (2011). Maximizing power output in homogeneous charge compression ignition (HCCI) engines and enabling effective control of combustion timing (PhD Thesis). University of California, Berkeley. Saxena, S. (2011). Maximizing power output in homogeneous charge compression ignition (HCCI) engines and enabling effective control of combustion timing (PhD Thesis). University of California, Berkeley.
33.
Zurück zum Zitat Feng, D., Wei, H., & Pan, M. (2018). Comparative study on combined effects of cooled EGR with intake boosting and variable compression ratios on combustion and emissions improvement in a SI engine. Applied Thermal Engineering, 131, 192–200.CrossRef Feng, D., Wei, H., & Pan, M. (2018). Comparative study on combined effects of cooled EGR with intake boosting and variable compression ratios on combustion and emissions improvement in a SI engine. Applied Thermal Engineering, 131, 192–200.CrossRef
34.
Zurück zum Zitat Maurya, R. K. (2012). Performance, emissions and combustion characterization and close loop control of HCCI engine employing gasoline like fuels (PhD thesis). Indian Institute of Technology, Kanpur, India. Maurya, R. K. (2012). Performance, emissions and combustion characterization and close loop control of HCCI engine employing gasoline like fuels (PhD thesis). Indian Institute of Technology, Kanpur, India.
35.
Zurück zum Zitat Maurya, R. K., & Agarwal, A. K. (2014). Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine. Fuel Processing Technology, 126, 30–48.CrossRef Maurya, R. K., & Agarwal, A. K. (2014). Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine. Fuel Processing Technology, 126, 30–48.CrossRef
36.
Zurück zum Zitat Atkins, R. D. (2009). An introduction to engine testing and development. Warrendale: SAE International.CrossRef Atkins, R. D. (2009). An introduction to engine testing and development. Warrendale: SAE International.CrossRef
37.
Zurück zum Zitat Johansson, T. (2010). Turbocharged HCCI engine, improving efficiency and operating range (PhD thesis). Lund University, Sweden. Johansson, T. (2010). Turbocharged HCCI engine, improving efficiency and operating range (PhD thesis). Lund University, Sweden.
38.
Zurück zum Zitat Shah, A. (2015). Improving the efficiency of gas engines using pre-chamber ignition (PhD thesis). Lund University, Sweden. Shah, A. (2015). Improving the efficiency of gas engines using pre-chamber ignition (PhD thesis). Lund University, Sweden.
39.
Zurück zum Zitat Li, Y., Jia, M., Chang, Y., Kokjohn, S. L., & Reitz, R. D. (2016). Thermodynamic energy and exergy analysis of three different engine combustion regimes. Applied Energy, 180, 849–858.CrossRef Li, Y., Jia, M., Chang, Y., Kokjohn, S. L., & Reitz, R. D. (2016). Thermodynamic energy and exergy analysis of three different engine combustion regimes. Applied Energy, 180, 849–858.CrossRef
40.
Zurück zum Zitat Hyvönen, J., Wilhelmsson, C., & Johansson, B. (2006). The effect of displacement on air-diluted multi-cylinder HCCI engine performance (No. 2006-01-0205). SAE Technical Paper. Hyvönen, J., Wilhelmsson, C., & Johansson, B. (2006). The effect of displacement on air-diluted multi-cylinder HCCI engine performance (No. 2006-01-0205). SAE Technical Paper.
41.
Zurück zum Zitat Srivastava, D. K., & Agarwal, A. K. (2018). Combustion characteristics of a variable compression ratio laser-plasma ignited compressed natural gas engine. Fuel, 214, 322–329.CrossRef Srivastava, D. K., & Agarwal, A. K. (2018). Combustion characteristics of a variable compression ratio laser-plasma ignited compressed natural gas engine. Fuel, 214, 322–329.CrossRef
42.
Zurück zum Zitat Li, Q., Liu, J., Fu, J., Zhou, X., & Liao, C. (2018). Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Applied Thermal Engineering, 137, 710–720.CrossRef Li, Q., Liu, J., Fu, J., Zhou, X., & Liao, C. (2018). Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Applied Thermal Engineering, 137, 710–720.CrossRef
43.
Zurück zum Zitat Basaran, H. U., & Ozsoysal, O. A. (2017). Effects of application of variable valve timing on the exhaust gas temperature improvement in a low-loaded diesel engine. Applied Thermal Engineering, 122, 758–767.CrossRef Basaran, H. U., & Ozsoysal, O. A. (2017). Effects of application of variable valve timing on the exhaust gas temperature improvement in a low-loaded diesel engine. Applied Thermal Engineering, 122, 758–767.CrossRef
44.
Zurück zum Zitat Cinar, C., Uyumaz, A., Solmaz, H., & Topgul, T. (2015). Effects of valve lift on the combustion and emissions of a HCCI gasoline engine. Energy Conversion and Management, 94, 159–168.CrossRef Cinar, C., Uyumaz, A., Solmaz, H., & Topgul, T. (2015). Effects of valve lift on the combustion and emissions of a HCCI gasoline engine. Energy Conversion and Management, 94, 159–168.CrossRef
45.
Zurück zum Zitat Abe, T., Nagahiro, K., Aoki, T., Minami, H., Kikuchi, M., & Hosogai, S. (2004). Development of new 2.2-liter turbocharged diesel engine for the EURO-IV standards (No. 2004-01-1316). SAE Technical Paper. Abe, T., Nagahiro, K., Aoki, T., Minami, H., Kikuchi, M., & Hosogai, S. (2004). Development of new 2.2-liter turbocharged diesel engine for the EURO-IV standards (No. 2004-01-1316). SAE Technical Paper.
46.
Zurück zum Zitat Lechner, G., & Naunheimer, H. (1999). Automotive transmissions: Fundamentals, selection, design and application. New York: Springer. Lechner, G., & Naunheimer, H. (1999). Automotive transmissions: Fundamentals, selection, design and application. New York: Springer.
47.
Zurück zum Zitat Kobayashi, A., Satou, T., Isaji, H., Takahashi, S., & Miyamoto, T. (2012). Development of new I3 1.2 L supercharged gasoline engine (No. 2012-01-0415). SAE Technical Paper. Kobayashi, A., Satou, T., Isaji, H., Takahashi, S., & Miyamoto, T. (2012). Development of new I3 1.2 L supercharged gasoline engine (No. 2012-01-0415). SAE Technical Paper.
48.
Zurück zum Zitat Shinagawa, T., Kudo, M., Matsubara, W., & Kawai, T. (2015). The new Toyota 1.2-liter ESTEC turbocharged direct injection gasoline engine (No. 2015-01-1268). SAE Technical Paper. Shinagawa, T., Kudo, M., Matsubara, W., & Kawai, T. (2015). The new Toyota 1.2-liter ESTEC turbocharged direct injection gasoline engine (No. 2015-01-1268). SAE Technical Paper.
49.
Zurück zum Zitat DeRaad, S., Fulton, B., Gryglak, A., Hallgren, B., Hudson, A., Ives, D., … & Cattermole, I. (2010). The new ford 6.7 L V-8 turbocharged diesel engine (No. 2010-01-1101). SAE Technical Paper. DeRaad, S., Fulton, B., Gryglak, A., Hallgren, B., Hudson, A., Ives, D., … & Cattermole, I. (2010). The new ford 6.7 L V-8 turbocharged diesel engine (No. 2010-01-1101). SAE Technical Paper.
50.
Zurück zum Zitat Fortnagel, M., Heil, B., Giese, J., Mürwald, M., Weining, H. K., & Lückert, P. (2000). Technischer Fortschritt durch Evolution—Neue Vierzylinder-Ottomotoren von Mercedes-Benz auf Basis des erfolgreichen M111 Teil 2. MTZ-Motortechnische Zeitschrift, 61(9), 582–590.CrossRef Fortnagel, M., Heil, B., Giese, J., Mürwald, M., Weining, H. K., & Lückert, P. (2000). Technischer Fortschritt durch Evolution—Neue Vierzylinder-Ottomotoren von Mercedes-Benz auf Basis des erfolgreichen M111 Teil 2. MTZ-Motortechnische Zeitschrift, 61(9), 582–590.CrossRef
Metadaten
Titel
Engine Performance Analysis
verfasst von
Rakesh Kumar Maurya
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11954-6_6

    Premium Partner