Skip to main content

2011 | OriginalPaper | Buchkapitel

9. Engineered Polypeptides for Tissue Engineering

verfasst von : Wei Shen

Erschienen in: Biomaterials for Tissue Engineering Applications

Verlag: Springer Vienna

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Engineered polypeptides have emerged as attractive materials to construct artificial extracellular matrices (ECMs) in tissue engineering. These materials offer advantages over conventional synthetic materials in recapitulating essential characteristics of complex and dynamic native ECMs, which is one of the key requirements for successful tissue engineering, because proteins are major players in providing structural support, cell adhesion, and signal regulation in native ECMs. The structures and functions of these proteins and their domains, as well as those of de novo designed polypeptide domains having self-assembly and molecular recognition abilities, can be combined in engineered polypeptides in a modular manner to yield multifunctional, bioactive materials to mimic native ECMs and optimize tissue engineering outcomes. Engineered polypeptides can be synthesized both chemically and biosynthetically. In recent years, the biosynthetic methodology has received increasing attention because the advances in molecular biology and protein engineering have expanded its capacity. Biosynthetic preparation allows polypeptide materials to be genetically engineered in a modular manner and the resulting polymers have absolutely uniform sequence, composition, molecular weight, and consequently higher order structures and functions. These properties not only allow us to engineer novel multifunctional materials to elicit desired cell responses toward functional tissue regeneration, but also offer the opportunity to create well-controlled and tunable systems for systematic studies to enhance our understanding of the relationships among extracellular microenvironments, cell behavior and fate selection, and tissue assembly. Such understanding will provide valuable guidelines for design of future generations of artificial ECMs. In this chapter, engineered polypeptides that have been used or have the potential to be used in tissue engineering will be discussed with an emphasis placed on their molecular design as well as examples of their use in tissue engineering studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303:1352–1355.CrossRef Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303:1352–1355.CrossRef
2.
Zurück zum Zitat Zhang SG. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003;21:1171–1178.CrossRef Zhang SG. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003;21:1171–1178.CrossRef
3.
Zurück zum Zitat Bella J, Eaton M, Brodsky B, Berman HM. Crystal-structure and molecular-structure of a collagen-like peptide at 1.9-angstrom resolution. Science 1994;266:75–81.CrossRef Bella J, Eaton M, Brodsky B, Berman HM. Crystal-structure and molecular-structure of a collagen-like peptide at 1.9-angstrom resolution. Science 1994;266:75–81.CrossRef
4.
Zurück zum Zitat Buechter DD, Paolella DN, Leslie BS, Brown MS, Mehos KA, Gruskin EA. Co-translational incorporation of trans-4-hydroxyproline into recombinant proteins in bacteria. J Biol Chem 2003;278:645–650.CrossRef Buechter DD, Paolella DN, Leslie BS, Brown MS, Mehos KA, Gruskin EA. Co-translational incorporation of trans-4-hydroxyproline into recombinant proteins in bacteria. J Biol Chem 2003;278:645–650.CrossRef
5.
Zurück zum Zitat Myllyharju J, Lamberg A, Notbohm H, Fietzek PP, Pihlajaniemi T, Kivirikko KI. Expression of wild-type and modified pro alpha chains of human type I procollagen in insect cells leads to the formation of stable [alpha 1(I)](2)alpha 2(I) collagen heterotrimers and [alpha 1(I)](3) homotrimers but not [alpha 2(I)](3) homotrimers. J Biol Chem 1997;272:21824–21830.CrossRef Myllyharju J, Lamberg A, Notbohm H, Fietzek PP, Pihlajaniemi T, Kivirikko KI. Expression of wild-type and modified pro alpha chains of human type I procollagen in insect cells leads to the formation of stable [alpha 1(I)](2)alpha 2(I) collagen heterotrimers and [alpha 1(I)](3) homotrimers but not [alpha 2(I)](3) homotrimers. J Biol Chem 1997;272:21824–21830.CrossRef
6.
Zurück zum Zitat Toman PD, Chisholm G, McMullin H, Gieren LM, Olsen DR, Kovach RJ, Leigh SD, Fong BE, Chang R, Daniels GA, Berg RA, Hitzeman RA. Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem 2000;275:23303–23309.CrossRef Toman PD, Chisholm G, McMullin H, Gieren LM, Olsen DR, Kovach RJ, Leigh SD, Fong BE, Chang R, Daniels GA, Berg RA, Hitzeman RA. Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem 2000;275:23303–23309.CrossRef
7.
Zurück zum Zitat Pakkanen O, Hamalainen ER, Kivirikko KI, Myllyharju J. Assembly of stable human type I and III collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris – Effect of an engineered C-terminal oligomerization domain foldon. J Biol Chem 2003;278:32478–32483.CrossRef Pakkanen O, Hamalainen ER, Kivirikko KI, Myllyharju J. Assembly of stable human type I and III collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris – Effect of an engineered C-terminal oligomerization domain foldon. J Biol Chem 2003;278:32478–32483.CrossRef
8.
Zurück zum Zitat Chen M, Costa FK, Lindvay CR, Han YP, Woodley DT. The recombinant expression of full-length type VII collagen and characterization of molecular mechanisms underlying dystrophic epidermolysis bullosa. J Biol Chem 2002;277:2118–2124.CrossRef Chen M, Costa FK, Lindvay CR, Han YP, Woodley DT. The recombinant expression of full-length type VII collagen and characterization of molecular mechanisms underlying dystrophic epidermolysis bullosa. J Biol Chem 2002;277:2118–2124.CrossRef
9.
Zurück zum Zitat Stein H, Wilensky M, Tsafrir Y, Rosenthal M, Amir R, Avraham T, Ofir K, Dgany O, Yayon A, Shoseyov O. Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules 2009;10:2640–2645.CrossRef Stein H, Wilensky M, Tsafrir Y, Rosenthal M, Amir R, Avraham T, Ofir K, Dgany O, Yayon A, Shoseyov O. Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules 2009;10:2640–2645.CrossRef
10.
Zurück zum Zitat Merle C, Perret S, Lacour T, Jonval V, Hudaverdian S, Garrone R, Ruggiero F, Theisen M. Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett 2002;515:114–118.CrossRef Merle C, Perret S, Lacour T, Jonval V, Hudaverdian S, Garrone R, Ruggiero F, Theisen M. Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett 2002;515:114–118.CrossRef
11.
Zurück zum Zitat Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 2003;21:52–56.CrossRef Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 2003;21:52–56.CrossRef
12.
Zurück zum Zitat Toman PD, Pieper F, Sakai N, Karatzas C, Platenburg E, de Wit I, Samuel C, Dekker A, Daniels GA, Berg RA, Platenburg GJ. Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice. Transgenic Res 1999;8:415–427.CrossRef Toman PD, Pieper F, Sakai N, Karatzas C, Platenburg E, de Wit I, Samuel C, Dekker A, Daniels GA, Berg RA, Platenburg GJ. Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice. Transgenic Res 1999;8:415–427.CrossRef
13.
Zurück zum Zitat Fertala A, Han WB, Ko FK. Mapping critical sites in collagen II for rational design of gene-engineered proteins for cell-supporting materials. J Biomed Mater Res 2001;57:48–58.CrossRef Fertala A, Han WB, Ko FK. Mapping critical sites in collagen II for rational design of gene-engineered proteins for cell-supporting materials. J Biomed Mater Res 2001;57:48–58.CrossRef
14.
Zurück zum Zitat Ito H, Steplewski A, Alabyeva T, Fertala A. Testing the utility of rationally engineered recombinant collagen-like proteins for applications in tissue engineering. J Biomed Mater Res A 2006;76A:551–560.CrossRef Ito H, Steplewski A, Alabyeva T, Fertala A. Testing the utility of rationally engineered recombinant collagen-like proteins for applications in tissue engineering. J Biomed Mater Res A 2006;76A:551–560.CrossRef
15.
Zurück zum Zitat Tanihara M, Kajiwara K, Ida K, Suzuki Y, Kamitakahara M, Ogata S. The biodegradability of poly(Pro-Hyp-Gly) synthetic polypeptide and the promotion of a dermal wound epithelialization using a poly(Pro-Hyp-Gly) sponge. J Biomed Mater Res A 2008;85A:133–139.CrossRef Tanihara M, Kajiwara K, Ida K, Suzuki Y, Kamitakahara M, Ogata S. The biodegradability of poly(Pro-Hyp-Gly) synthetic polypeptide and the promotion of a dermal wound epithelialization using a poly(Pro-Hyp-Gly) sponge. J Biomed Mater Res A 2008;85A:133–139.CrossRef
16.
Zurück zum Zitat Paramonov SE, Gauba V, Hartgerink JD. Synthesis of collagen-like peptide polymers by native chemical ligation. Macromolecules 2005;38:7555–7561.CrossRef Paramonov SE, Gauba V, Hartgerink JD. Synthesis of collagen-like peptide polymers by native chemical ligation. Macromolecules 2005;38:7555–7561.CrossRef
17.
Zurück zum Zitat Yamazaki CM, Asada S, Kitagawa K, Koide T. Artificial collagen gels via self-assembly of de novo designed peptides. Biopolymers 2008;90:816–823.CrossRef Yamazaki CM, Asada S, Kitagawa K, Koide T. Artificial collagen gels via self-assembly of de novo designed peptides. Biopolymers 2008;90:816–823.CrossRef
18.
Zurück zum Zitat Koide T, Homma DL, Asada S, Kitagawa K. Self-complementary peptides for the formation of collagen-like triple helical supramolecules. Bioorg Med Chem Lett 2005;15:5230–5233.CrossRef Koide T, Homma DL, Asada S, Kitagawa K. Self-complementary peptides for the formation of collagen-like triple helical supramolecules. Bioorg Med Chem Lett 2005;15:5230–5233.CrossRef
19.
Zurück zum Zitat Rele S, Song Y, Apkarian RP, Qu Z, Conticello VP, Chaikof EL. D-periodic collagen-mimetic microfibers. J Am Chem Soc 2007;129:14780–14787.CrossRef Rele S, Song Y, Apkarian RP, Qu Z, Conticello VP, Chaikof EL. D-periodic collagen-mimetic microfibers. J Am Chem Soc 2007;129:14780–14787.CrossRef
20.
Zurück zum Zitat Cejas MA, Kinnney WA, Chen C, Vinter JG, Almond HR, Balss KM, Maryanoff CA, Schmidt U, Breslav M, Mahan A, Lacy E, Maryanoff BE. Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions. Proc Natl Acad Sci U S A 2008;105:8513–8518.CrossRef Cejas MA, Kinnney WA, Chen C, Vinter JG, Almond HR, Balss KM, Maryanoff CA, Schmidt U, Breslav M, Mahan A, Lacy E, Maryanoff BE. Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions. Proc Natl Acad Sci U S A 2008;105:8513–8518.CrossRef
21.
Zurück zum Zitat Pires MM, Przybyla DE, Chmielewski J. A metal-collagen peptide framework for three-dimensional cell culture. Angew Chem Int Ed Engl 2009;48:7813–7817.CrossRef Pires MM, Przybyla DE, Chmielewski J. A metal-collagen peptide framework for three-dimensional cell culture. Angew Chem Int Ed Engl 2009;48:7813–7817.CrossRef
22.
Zurück zum Zitat Krishna OD, Kiick KL. Supramolecular assembly of electrostatically stabilized, hydroxyproline-lacking collagen-mimetic peptides. Biomacromolecules 2009;10:2626–2631.CrossRef Krishna OD, Kiick KL. Supramolecular assembly of electrostatically stabilized, hydroxyproline-lacking collagen-mimetic peptides. Biomacromolecules 2009;10:2626–2631.CrossRef
23.
Zurück zum Zitat Yao JM, Yanagisawa S, Asakura T. Design, expression and characterization of collagen-like proteins based on the cell adhesive and crosslinking sequences derived from native collagens. J Biochem 2004;136:643–649.CrossRef Yao JM, Yanagisawa S, Asakura T. Design, expression and characterization of collagen-like proteins based on the cell adhesive and crosslinking sequences derived from native collagens. J Biochem 2004;136:643–649.CrossRef
24.
Zurück zum Zitat Werten MWT, Teles H, Moers APHA, Wolbert EJH, Sprakel J, Eggink G, de Wolf FA. Precision gels from collagen-inspired triblock copolymers. Biomacromolecules 2009;10:1106–1113.CrossRef Werten MWT, Teles H, Moers APHA, Wolbert EJH, Sprakel J, Eggink G, de Wolf FA. Precision gels from collagen-inspired triblock copolymers. Biomacromolecules 2009;10:1106–1113.CrossRef
25.
Zurück zum Zitat Debelle L, Alix AJP. The structures of elastins and their function. Biochimie 1999;81:981–994.CrossRef Debelle L, Alix AJP. The structures of elastins and their function. Biochimie 1999;81:981–994.CrossRef
26.
Zurück zum Zitat Vrhovski B, Weiss AS. Biochemistry of tropoelastin. Eur J Biochem 1998;258:1–18.CrossRef Vrhovski B, Weiss AS. Biochemistry of tropoelastin. Eur J Biochem 1998;258:1–18.CrossRef
27.
Zurück zum Zitat Li B, Daggett V. Molecular basis for the extensibility of elastin. J Muscle Res Cell Motil 2002;23:561–573.CrossRef Li B, Daggett V. Molecular basis for the extensibility of elastin. J Muscle Res Cell Motil 2002;23:561–573.CrossRef
28.
Zurück zum Zitat Urry DW. Molecular Mechanisms of elastin coacervation and coacervate calcification. Faraday Discuss 1976;61:205–212.CrossRef Urry DW. Molecular Mechanisms of elastin coacervation and coacervate calcification. Faraday Discuss 1976;61:205–212.CrossRef
29.
Zurück zum Zitat Grosso LE, Scott M. Pgaipg, a repeated hexapeptide of bovine tropoelastin, is a ligand for the 67-Kda bovine elastin receptor. Matrix 1993;13:157–164.CrossRef Grosso LE, Scott M. Pgaipg, a repeated hexapeptide of bovine tropoelastin, is a ligand for the 67-Kda bovine elastin receptor. Matrix 1993;13:157–164.CrossRef
30.
Zurück zum Zitat Mochizuki S, Brassart B, Hinek A. Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem 2002;277:44854–44863.CrossRef Mochizuki S, Brassart B, Hinek A. Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem 2002;277:44854–44863.CrossRef
31.
Zurück zum Zitat Stephan S, Ball SG, Williamson M, Bax DV, Lomas A, Shuttleworth CA, Kielty CM. Cell-matrix biology in vascular tissue engineering. J Anat 2006;209:495–502.CrossRef Stephan S, Ball SG, Williamson M, Bax DV, Lomas A, Shuttleworth CA, Kielty CM. Cell-matrix biology in vascular tissue engineering. J Anat 2006;209:495–502.CrossRef
32.
Zurück zum Zitat Woodhouse KA, Klement P, Chen V, Gorbet MB, Keeley FW, Stahl R, Fromstein JD, Bellingham CM. Investigation of recombinant human elastin polypeptides as non-thrombogenic coatings. Biomaterials 2004;25:4543–4553.CrossRef Woodhouse KA, Klement P, Chen V, Gorbet MB, Keeley FW, Stahl R, Fromstein JD, Bellingham CM. Investigation of recombinant human elastin polypeptides as non-thrombogenic coatings. Biomaterials 2004;25:4543–4553.CrossRef
33.
Zurück zum Zitat Urry DW. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 1997;101:11007–11028.CrossRef Urry DW. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 1997;101:11007–11028.CrossRef
34.
Zurück zum Zitat Urry DW, Luan CH, Parker TM, Gowda DC, Prasad KU, Reid MC, Safavy A. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J Am Chem Soc 1991;113:4346–4348.CrossRef Urry DW, Luan CH, Parker TM, Gowda DC, Prasad KU, Reid MC, Safavy A. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J Am Chem Soc 1991;113:4346–4348.CrossRef
35.
Zurück zum Zitat Urry DW, Trapane TL, Sugano H, Prasad KU. Sequential polypeptides of elastin – Cyclic conformational correlates of the linear polypentapeptide. J Am Chem Soc 1981;103:2080–2089.CrossRef Urry DW, Trapane TL, Sugano H, Prasad KU. Sequential polypeptides of elastin – Cyclic conformational correlates of the linear polypentapeptide. J Am Chem Soc 1981;103:2080–2089.CrossRef
36.
Zurück zum Zitat Mcpherson DT, Morrow C, Minehan DS, Wu JG, Hunter E, Urry DW. Production and purification of a recombinant elastomeric polypeptide, G-(Vpgvg)19-Vpgv, from Escherichia coli. Biotechnol Prog 1992;8:347–352.CrossRef Mcpherson DT, Morrow C, Minehan DS, Wu JG, Hunter E, Urry DW. Production and purification of a recombinant elastomeric polypeptide, G-(Vpgvg)19-Vpgv, from Escherichia coli. Biotechnol Prog 1992;8:347–352.CrossRef
37.
Zurück zum Zitat Urry DW, Parker TM, Reid MC, Gowda DC. Biocompatibility of the bioelastic materials, poly(gvgvp) and its gamma-irradiation cross-linked matrix – Summary of generic biological test-results. J Bioact Compat Polym 1991;6:263–282.CrossRef Urry DW, Parker TM, Reid MC, Gowda DC. Biocompatibility of the bioelastic materials, poly(gvgvp) and its gamma-irradiation cross-linked matrix – Summary of generic biological test-results. J Bioact Compat Polym 1991;6:263–282.CrossRef
38.
Zurück zum Zitat Urry DW, Pattanaik A, Xu J, Woods TC, McPherson DT, Parker TM. Elastic protein-based polymers in soft tissue augmentation and generation. J Biomater Sci Polym Ed 1998;9:1015–1048.CrossRef Urry DW, Pattanaik A, Xu J, Woods TC, McPherson DT, Parker TM. Elastic protein-based polymers in soft tissue augmentation and generation. J Biomater Sci Polym Ed 1998;9:1015–1048.CrossRef
39.
Zurück zum Zitat Heilshorn SC, Liu JC, Tirrell DA. Cell-binding domain context affects cell behavior on engineered proteins. Biomacromolecules 2005;6:318–323.CrossRef Heilshorn SC, Liu JC, Tirrell DA. Cell-binding domain context affects cell behavior on engineered proteins. Biomacromolecules 2005;6:318–323.CrossRef
40.
Zurück zum Zitat Martino M, Tamburro AM. Chemical synthesis of cross-linked poly(KGGVG), an elastin-like biopolymer. Biopolymers 2001;59:29–37.CrossRef Martino M, Tamburro AM. Chemical synthesis of cross-linked poly(KGGVG), an elastin-like biopolymer. Biopolymers 2001;59:29–37.CrossRef
41.
Zurück zum Zitat Welsh ER, Tirrell DA. Engineering the extracellular matrix: A novel approach to polymeric biomaterials. I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells. Biomacromolecules 2000;1:23–30.CrossRef Welsh ER, Tirrell DA. Engineering the extracellular matrix: A novel approach to polymeric biomaterials. I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells. Biomacromolecules 2000;1:23–30.CrossRef
42.
Zurück zum Zitat Huang L, McMillan RA, Apkarian RP, Pourdeyhimi B, Conticello VP, Chaikof EL. Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules 2000;33:2989–2997.CrossRef Huang L, McMillan RA, Apkarian RP, Pourdeyhimi B, Conticello VP, Chaikof EL. Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules 2000;33:2989–2997.CrossRef
43.
Zurück zum Zitat Di Zio K, Tirrell DA. Mechanical properties of artificial protein matrices engineered for control of cell and tissue behavior. Macromolecules 2003;36:1553–1558.CrossRef Di Zio K, Tirrell DA. Mechanical properties of artificial protein matrices engineered for control of cell and tissue behavior. Macromolecules 2003;36:1553–1558.CrossRef
44.
Zurück zum Zitat Nowatzki PJ, Tirrell DA. Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking. Biomaterials 2004;25:1261–1267.CrossRef Nowatzki PJ, Tirrell DA. Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking. Biomaterials 2004;25:1261–1267.CrossRef
45.
Zurück zum Zitat McMillan RA, Lee TAT, Conticello VP. Rapid assembly of synthetic genes encoding protein polymers. Macromolecules 1999;32:3643–3648.CrossRef McMillan RA, Lee TAT, Conticello VP. Rapid assembly of synthetic genes encoding protein polymers. Macromolecules 1999;32:3643–3648.CrossRef
46.
Zurück zum Zitat Trabbic-Carlson K, Setton LA, Chilkoti A. Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides. Biomacromolecules 2003;4:572–580.CrossRef Trabbic-Carlson K, Setton LA, Chilkoti A. Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides. Biomacromolecules 2003;4:572–580.CrossRef
47.
Zurück zum Zitat Liu JC, Heilshorn SC, Tirrell DA. Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules 2004;5:497–504.CrossRef Liu JC, Heilshorn SC, Tirrell DA. Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules 2004;5:497–504.CrossRef
48.
Zurück zum Zitat Wu X, Sallach RE, Caves JM, Conticello VP, Chaikof EL. Deformation responses of a physically cross-linked high molecular weight elastin-like protein polymer. Biomacromolecules 2008;9:1787–1794.CrossRef Wu X, Sallach RE, Caves JM, Conticello VP, Chaikof EL. Deformation responses of a physically cross-linked high molecular weight elastin-like protein polymer. Biomacromolecules 2008;9:1787–1794.CrossRef
49.
Zurück zum Zitat Wu XY, Sallach R, Haller CA, Caves JA, Nagapudi K, Conticello VP, Levenston ME, Chaikof EL. Alterations in physical cross-linking modulate mechanical properties of two-phase protein polymer networks. Biomacromolecules 2005;6:3037–3044.CrossRef Wu XY, Sallach R, Haller CA, Caves JA, Nagapudi K, Conticello VP, Levenston ME, Chaikof EL. Alterations in physical cross-linking modulate mechanical properties of two-phase protein polymer networks. Biomacromolecules 2005;6:3037–3044.CrossRef
50.
Zurück zum Zitat Wright ER, McMillan RA, Cooper A, Apkarian RP, Conticello VP. Thermoplastic elastomer hydrogels via self-assembly of an elastin-mimetic triblock polypeptide. Adv Funct Mater 2002;12:149–154.CrossRef Wright ER, McMillan RA, Cooper A, Apkarian RP, Conticello VP. Thermoplastic elastomer hydrogels via self-assembly of an elastin-mimetic triblock polypeptide. Adv Funct Mater 2002;12:149–154.CrossRef
51.
Zurück zum Zitat Betre H, Setton LA, Meyer DE, Chilkoti A. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules 2002;3:910–916.CrossRef Betre H, Setton LA, Meyer DE, Chilkoti A. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules 2002;3:910–916.CrossRef
52.
Zurück zum Zitat Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 2006;27:91–99.CrossRef Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 2006;27:91–99.CrossRef
53.
Zurück zum Zitat McHale MK, Setton LA, Chilkoti A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng 2005;11:1768–1779.CrossRef McHale MK, Setton LA, Chilkoti A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng 2005;11:1768–1779.CrossRef
54.
Zurück zum Zitat Lim DW, Nettles DL, Setton LA, Chilkoti A. Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromolecules 2007;8:1463–1470.CrossRef Lim DW, Nettles DL, Setton LA, Chilkoti A. Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromolecules 2007;8:1463–1470.CrossRef
55.
Zurück zum Zitat Nettles DL, Kitaoka K, Hanson NA, Flahiff CM, Mata BA, Hsu EW, Chilkoti A, Setton LA. In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng Part A 2008;14:1133–1140.CrossRef Nettles DL, Kitaoka K, Hanson NA, Flahiff CM, Mata BA, Hsu EW, Chilkoti A, Setton LA. In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng Part A 2008;14:1133–1140.CrossRef
56.
Zurück zum Zitat Lim DW, Nettles DL, Setton LA, Chilkoti A. In situ cross-linkinig of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules 2008;9:222–230.CrossRef Lim DW, Nettles DL, Setton LA, Chilkoti A. In situ cross-linkinig of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules 2008;9:222–230.CrossRef
57.
Zurück zum Zitat Nagapudi K, Brinkman WT, Leisen JE, Huang L, McMillan RA, Apkarian RP, Conticello VP, Chaikof EL. Photomediated solid-state cross-linking of an elastin-mimetic recombinant protein polymer. Macromolecules 2002;35:1730–1737.CrossRef Nagapudi K, Brinkman WT, Leisen JE, Huang L, McMillan RA, Apkarian RP, Conticello VP, Chaikof EL. Photomediated solid-state cross-linking of an elastin-mimetic recombinant protein polymer. Macromolecules 2002;35:1730–1737.CrossRef
58.
Zurück zum Zitat Martinez-Osorio H, Juarez-Campo M, Diebold Y, Girotti A, Alonso M, Javier Arias F, Rodriguez-Cabello JC, Garcia-Vazquez C, Calonge M. Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Curr Eye Res 2009;34:48–56.CrossRef Martinez-Osorio H, Juarez-Campo M, Diebold Y, Girotti A, Alonso M, Javier Arias F, Rodriguez-Cabello JC, Garcia-Vazquez C, Calonge M. Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface. Curr Eye Res 2009;34:48–56.CrossRef
59.
Zurück zum Zitat Mie M, Mizushima Y, Kobatake E. Novel extracellular matrix for cell sheet recovery using genetically engineered elastin-like protein. J Biomed Mater Res B Appl Biomater 2008;86B:283–290.CrossRef Mie M, Mizushima Y, Kobatake E. Novel extracellular matrix for cell sheet recovery using genetically engineered elastin-like protein. J Biomed Mater Res B Appl Biomater 2008;86B:283–290.CrossRef
60.
Zurück zum Zitat Zhang HL, Iwama M, Akaike T, Urry DW, Pattanaik A, Parker TM, Konishi I, Nikaido T. Human amniotic cell sheet harvest using a novel temperature-responsive culture surface coated with protein-based polymer. Tissue Eng 2006;12:391–401.CrossRef Zhang HL, Iwama M, Akaike T, Urry DW, Pattanaik A, Parker TM, Konishi I, Nikaido T. Human amniotic cell sheet harvest using a novel temperature-responsive culture surface coated with protein-based polymer. Tissue Eng 2006;12:391–401.CrossRef
61.
Zurück zum Zitat Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003;24:401–416.CrossRef Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials 2003;24:401–416.CrossRef
62.
Zurück zum Zitat Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 1999;46:382–389.CrossRef Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 1999;46:382–389.CrossRef
63.
Zurück zum Zitat Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002;23:4131–4141.CrossRef Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002;23:4131–4141.CrossRef
64.
Zurück zum Zitat Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 2001;54:139–148.CrossRef Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 2001;54:139–148.CrossRef
65.
Zurück zum Zitat Dal Pra I, Petrini P, Charini A, Bozzini S, Fare S, Armato U. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: Interactions with normal human fibroblasts. Tissue Eng 2003;9:1113–1121.CrossRef Dal Pra I, Petrini P, Charini A, Bozzini S, Fare S, Armato U. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: Interactions with normal human fibroblasts. Tissue Eng 2003;9:1113–1121.CrossRef
66.
Zurück zum Zitat Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, Vunjak-Novakovic G. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 2004;88:379–391.CrossRef Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, Vunjak-Novakovic G. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 2004;88:379–391.CrossRef
67.
Zurück zum Zitat Sugihara A, Sugiura K, Morita H, Ninagawa T, Tubouchi K, Tobe R, Izumiya M, Horio T, Abraham NG, Ikehara S. Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds. Proc Soc Exp Biol Med 2000;225:58–64.CrossRef Sugihara A, Sugiura K, Morita H, Ninagawa T, Tubouchi K, Tobe R, Izumiya M, Horio T, Abraham NG, Ikehara S. Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds. Proc Soc Exp Biol Med 2000;225:58–64.CrossRef
68.
Zurück zum Zitat Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 2006;10:770–777.CrossRef Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 2006;10:770–777.CrossRef
69.
Zurück zum Zitat Fahnestock SR, Irwin SL. Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 1997;47:23–32.CrossRef Fahnestock SR, Irwin SL. Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 1997;47:23–32.CrossRef
70.
Zurück zum Zitat Fahnestock SR, Bedzyk LA. Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol 1997;47:33–39.CrossRef Fahnestock SR, Bedzyk LA. Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol 1997;47:33–39.CrossRef
71.
Zurück zum Zitat Miao Y, Zhang Y, Nakagaki K, Zhao T, Zhao A, Meng Y, Nakagaki M, Park EY, Maenaka K. Expression of spider flagelliform silk protein in Bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system. Appl Microbiol Biotechnol 2006;71:192–199.CrossRef Miao Y, Zhang Y, Nakagaki K, Zhao T, Zhao A, Meng Y, Nakagaki M, Park EY, Maenaka K. Expression of spider flagelliform silk protein in Bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system. Appl Microbiol Biotechnol 2006;71:192–199.CrossRef
72.
Zurück zum Zitat Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002;295:472–476.CrossRef Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002;295:472–476.CrossRef
73.
Zurück zum Zitat Scheller J, Guhrs KH, Grosse F, Conrad U. Production of spider silk proteins in tobacco and potato. Nat Biotechnol 2001;19:573–577.CrossRef Scheller J, Guhrs KH, Grosse F, Conrad U. Production of spider silk proteins in tobacco and potato. Nat Biotechnol 2001;19:573–577.CrossRef
74.
Zurück zum Zitat Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001;410:541–548.CrossRef Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001;410:541–548.CrossRef
75.
Zurück zum Zitat Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature 2003;424:1057–1061.CrossRef Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature 2003;424:1057–1061.CrossRef
76.
Zurück zum Zitat Huang J, Foo CWP, Kaplan DL. Biosynthesis and applications of silk-like and collagen-like proteins. Polym Rev 2007;47:29–62.CrossRef Huang J, Foo CWP, Kaplan DL. Biosynthesis and applications of silk-like and collagen-like proteins. Polym Rev 2007;47:29–62.CrossRef
77.
Zurück zum Zitat Bini E, Foo CWP, Huang J, Karageorgiou V, Kitchel B, Kaplan DL. RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 2006;7:3139–3145.CrossRef Bini E, Foo CWP, Huang J, Karageorgiou V, Kitchel B, Kaplan DL. RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 2006;7:3139–3145.CrossRef
78.
Zurück zum Zitat Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T, Asakura T. Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromolecules 2007;8:3487–3492.CrossRef Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T, Asakura T. Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromolecules 2007;8:3487–3492.CrossRef
79.
Zurück zum Zitat Yang M, Yamauchi K, Kurokawa M, Asakura T. Design of silk-like biomaterials inspired by mussel-adhesive protein. Tissue Eng 2007;13:2941–2947.CrossRef Yang M, Yamauchi K, Kurokawa M, Asakura T. Design of silk-like biomaterials inspired by mussel-adhesive protein. Tissue Eng 2007;13:2941–2947.CrossRef
80.
Zurück zum Zitat Huang J, Wong C, George A, Kaplan DL. The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 2007;28:2358–2367.CrossRef Huang J, Wong C, George A, Kaplan DL. The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 2007;28:2358–2367.CrossRef
81.
Zurück zum Zitat Grip S, Johansson J, Hedhammar M. Engineered disulfides improve mechanical properties of recombinant spider silk. Protein Sci 2009;18:1012–1022.CrossRef Grip S, Johansson J, Hedhammar M. Engineered disulfides improve mechanical properties of recombinant spider silk. Protein Sci 2009;18:1012–1022.CrossRef
82.
Zurück zum Zitat Teule F, Furin WA, Cooper AR, Duncan JR, Lewis RV. Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J Mater Sci 2007;42:8974–8985.CrossRef Teule F, Furin WA, Cooper AR, Duncan JR, Lewis RV. Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J Mater Sci 2007;42:8974–8985.CrossRef
83.
Zurück zum Zitat Szela S, Avtges P, Valluzzi R, Winkler S, Wilson D, Kirschner D, Kaplan DL. Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules 2000;1:534–542.CrossRef Szela S, Avtges P, Valluzzi R, Winkler S, Wilson D, Kirschner D, Kaplan DL. Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules 2000;1:534–542.CrossRef
84.
Zurück zum Zitat Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D. Methionine redox controlled crystallization of biosynthetic silk spidroin. J Phys Chem B 1999;103:11382–11392.CrossRef Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D. Methionine redox controlled crystallization of biosynthetic silk spidroin. J Phys Chem B 1999;103:11382–11392.CrossRef
85.
Zurück zum Zitat Winkler S, Wilson D, Kaplan DL. Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry (N Y) 2000;39:12739–12746.CrossRef Winkler S, Wilson D, Kaplan DL. Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry (N Y) 2000;39:12739–12746.CrossRef
86.
Zurück zum Zitat Haider M, Cappello J, Ghandehari H, Leong KW. In vitro chondrogenesis of mesenchymal stem cells in recombinant silk-elastinlike hydrogels. Pharm Res 2008;25:692–699.CrossRef Haider M, Cappello J, Ghandehari H, Leong KW. In vitro chondrogenesis of mesenchymal stem cells in recombinant silk-elastinlike hydrogels. Pharm Res 2008;25:692–699.CrossRef
87.
Zurück zum Zitat Oshea EK, Klemm JD, Kim PS, Alber T. X-ray structure of the Gcn4 leucine zipper, a 2-stranded, parallel coiled coil. Science 1991;254:539–544.CrossRef Oshea EK, Klemm JD, Kim PS, Alber T. X-ray structure of the Gcn4 leucine zipper, a 2-stranded, parallel coiled coil. Science 1991;254:539–544.CrossRef
88.
Zurück zum Zitat Oshea EK, Rutkowski R, Kim PS. Evidence that the leucine zipper is a coiled coil. Science 1989;243:538–542.CrossRef Oshea EK, Rutkowski R, Kim PS. Evidence that the leucine zipper is a coiled coil. Science 1989;243:538–542.CrossRef
89.
Zurück zum Zitat Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA. Reversible hydrogels from self-assembling artificial proteins. Science 1998;281:389–392.CrossRef Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA. Reversible hydrogels from self-assembling artificial proteins. Science 1998;281:389–392.CrossRef
90.
Zurück zum Zitat Shen W, Zhang KC, Kornfield JA, Tirrell DA. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 2006;5:153–158.CrossRef Shen W, Zhang KC, Kornfield JA, Tirrell DA. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 2006;5:153–158.CrossRef
91.
Zurück zum Zitat Wang C, Stewart RJ, Kopecek J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 1999;397:417–420.CrossRef Wang C, Stewart RJ, Kopecek J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 1999;397:417–420.CrossRef
92.
Zurück zum Zitat Yang JY, Xu CY, Wang C, Kopecek J. Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. Biomacromolecules 2006;7:1187–1195.CrossRef Yang JY, Xu CY, Wang C, Kopecek J. Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. Biomacromolecules 2006;7:1187–1195.CrossRef
93.
Zurück zum Zitat Jing P, Rudra JS, Herr AB, Collier JH. Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 2008;9:2438–2446.CrossRef Jing P, Rudra JS, Herr AB, Collier JH. Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 2008;9:2438–2446.CrossRef
94.
Zurück zum Zitat Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN. Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry (N Y) 2000;39:8728–8734.CrossRef Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN. Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry (N Y) 2000;39:8728–8734.CrossRef
95.
Zurück zum Zitat Smith AM, Banwell EF, Edwards WR, Pandya MJ, Woolfson DN. Engineering increased stability into self-assembled protein fibers. Adv Funct Mater 2006;16:1022–1030.CrossRef Smith AM, Banwell EF, Edwards WR, Pandya MJ, Woolfson DN. Engineering increased stability into self-assembled protein fibers. Adv Funct Mater 2006;16:1022–1030.CrossRef
96.
Zurück zum Zitat Ryadnov MG, Woolfson DN. Fiber recruiting peptides: Noncovalent decoration of an engineered protein scaffold. J Am Chem Soc 2004;126:7454–7455.CrossRef Ryadnov MG, Woolfson DN. Fiber recruiting peptides: Noncovalent decoration of an engineered protein scaffold. J Am Chem Soc 2004;126:7454–7455.CrossRef
97.
Zurück zum Zitat Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002;417:424–428.CrossRef Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002;417:424–428.CrossRef
98.
Zurück zum Zitat Pakstis LM, Ozbas B, Hales KD, Nowak AP, Deming TJ, Pochan D. Effect of chemistry and morphology on the biofunctionality of self-assembling diblock copolypeptide hydrogels. Biomacromolecules 2004;5:312–318.CrossRef Pakstis LM, Ozbas B, Hales KD, Nowak AP, Deming TJ, Pochan D. Effect of chemistry and morphology on the biofunctionality of self-assembling diblock copolypeptide hydrogels. Biomacromolecules 2004;5:312–318.CrossRef
99.
Zurück zum Zitat Nowak AP, Breedveld V, Pine DJ, Deming TJ. Unusual salt stability in highly charged diblock co-polypeptide hydrogels. J Am Chem Soc 2003;125:15666–15670.CrossRef Nowak AP, Breedveld V, Pine DJ, Deming TJ. Unusual salt stability in highly charged diblock co-polypeptide hydrogels. J Am Chem Soc 2003;125:15666–15670.CrossRef
100.
Zurück zum Zitat Deming TJ. Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 2005; 1:28–35.CrossRef Deming TJ. Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 2005; 1:28–35.CrossRef
101.
Zurück zum Zitat Yang C, Song B, Ao Y, Nowak AP, Abelowitz RB, Korsak RA, Havton LA, Deming TJ, Sofroniew MV. Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system. Biomaterials 2009;30:2881–2898.CrossRef Yang C, Song B, Ao Y, Nowak AP, Abelowitz RB, Korsak RA, Havton LA, Deming TJ, Sofroniew MV. Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system. Biomaterials 2009;30:2881–2898.CrossRef
102.
Zurück zum Zitat Giancotti FG, Ruoslahti E. Transduction – Integrin signaling. Science 1999;285:1028–1032.CrossRef Giancotti FG, Ruoslahti E. Transduction – Integrin signaling. Science 1999;285:1028–1032.CrossRef
103.
Zurück zum Zitat Le PU, Lenferink AEG, Pinard M, Baardsnes J, Massie B, O'Connor-McCourt MD. Escherichia coli expression and refolding of E/K-coil-tagged EGF generates fully bioactive EGF for diverse applications. Protein Expr Purif 2009;64:108–117.CrossRef Le PU, Lenferink AEG, Pinard M, Baardsnes J, Massie B, O'Connor-McCourt MD. Escherichia coli expression and refolding of E/K-coil-tagged EGF generates fully bioactive EGF for diverse applications. Protein Expr Purif 2009;64:108–117.CrossRef
104.
Zurück zum Zitat Boucher C, St-Laurent G, Loignon M, Jolicoeur M, De Crescenzo G, Durocher Y. The bioactivity and receptor affinity of recombinant tagged EGF designed for tissue engineering applications is defined by the nature and position of the tags. Tissue Eng Part A 2008;14:2069–2077.CrossRef Boucher C, St-Laurent G, Loignon M, Jolicoeur M, De Crescenzo G, Durocher Y. The bioactivity and receptor affinity of recombinant tagged EGF designed for tissue engineering applications is defined by the nature and position of the tags. Tissue Eng Part A 2008;14:2069–2077.CrossRef
105.
Zurück zum Zitat Nakaji-Hirabayashi T, Kato K, Iwata H. Surface-anchoring of spontaneously dimerized epidermal growth factor for highly selective expansion of neural stem cells. Bioconjug Chem 2009;20:102–110.CrossRef Nakaji-Hirabayashi T, Kato K, Iwata H. Surface-anchoring of spontaneously dimerized epidermal growth factor for highly selective expansion of neural stem cells. Bioconjug Chem 2009;20:102–110.CrossRef
106.
Zurück zum Zitat Cappello J, Crissman JW, Crissman M, Ferrari FA, Textor G, Wallis O, Whitledge JR, Zhou X, Burman D, Aukerman L, Stedronsky ER. In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J Control Release 1998;53:105–117.CrossRef Cappello J, Crissman JW, Crissman M, Ferrari FA, Textor G, Wallis O, Whitledge JR, Zhou X, Burman D, Aukerman L, Stedronsky ER. In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J Control Release 1998;53:105–117.CrossRef
107.
Zurück zum Zitat Manickam DS, Oupicky D. Multiblock reducible copolypeptides containing histidine-rich and nuclear localization sequences for gene delivery. Bioconjug Chem 2006;17:1395–1403.CrossRef Manickam DS, Oupicky D. Multiblock reducible copolypeptides containing histidine-rich and nuclear localization sequences for gene delivery. Bioconjug Chem 2006;17:1395–1403.CrossRef
108.
Zurück zum Zitat Chen DJ, Majors BS, Zelikin A, Putnam D. Structure-function relationships of gene delivery vectors in a limited polycation library. J Control Release 2005;103:273–283.CrossRef Chen DJ, Majors BS, Zelikin A, Putnam D. Structure-function relationships of gene delivery vectors in a limited polycation library. J Control Release 2005;103:273–283.CrossRef
109.
Zurück zum Zitat Wheeldon IR, Gallaway JW, Barton SC, Banta S. Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks. Proc Natl Acad Sci U S A 2008;105:15275–15280.CrossRef Wheeldon IR, Gallaway JW, Barton SC, Banta S. Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks. Proc Natl Acad Sci U S A 2008;105:15275–15280.CrossRef
110.
Zurück zum Zitat Rizzi SC, Hubbell JA. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part 1: Development and physicochernical characteristics. Biomacromolecules 2005;6:1226–1238.CrossRef Rizzi SC, Hubbell JA. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part 1: Development and physicochernical characteristics. Biomacromolecules 2005;6:1226–1238.CrossRef
111.
Zurück zum Zitat Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmueller H, Mueller R, Weber FE, Hubbell JA. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: Biofunctional characteristics. Biomacromolecules 2006;7:3019–3029.CrossRef Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmueller H, Mueller R, Weber FE, Hubbell JA. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: Biofunctional characteristics. Biomacromolecules 2006;7:3019–3029.CrossRef
112.
Zurück zum Zitat Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 2005;4:298–302.CrossRef Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 2005;4:298–302.CrossRef
113.
Zurück zum Zitat Murphy WL, Dillmore WS, Modica J, Mrksich M. Dynamic hydrogels: Translating a protein conformational change into macroscopic motion. Angew Chem Int Ed Engl 2007;46:3066–3069.CrossRef Murphy WL, Dillmore WS, Modica J, Mrksich M. Dynamic hydrogels: Translating a protein conformational change into macroscopic motion. Angew Chem Int Ed Engl 2007;46:3066–3069.CrossRef
114.
Zurück zum Zitat Sui Z, King WJ, Murphy WL. Dynamic materials based on a protein conformational change. Adv Mater 2007;19:3377–3380.CrossRef Sui Z, King WJ, Murphy WL. Dynamic materials based on a protein conformational change. Adv Mater 2007;19:3377–3380.CrossRef
115.
Zurück zum Zitat Sui Z, King WJ, Murphy WL. Protein-based hydrogels with tunable dynamic responses. Adv Funct Mater 2008;18:1824–1831.CrossRef Sui Z, King WJ, Murphy WL. Protein-based hydrogels with tunable dynamic responses. Adv Funct Mater 2008;18:1824–1831.CrossRef
116.
Zurück zum Zitat King WJ, Mohammed JS, Murphy WL. Modulating growth factor release from hydrogels via a protein conformational change. Soft Matter 2009;5:2399–2406.CrossRef King WJ, Mohammed JS, Murphy WL. Modulating growth factor release from hydrogels via a protein conformational change. Soft Matter 2009;5:2399–2406.CrossRef
117.
Zurück zum Zitat Topp S, Prasad V, Cianci GC, Weeks ER, Gallivan JP. A genetic toolbox for creating reversible Ca2+-sensitive materials. J Am Chem Soc 2006;128:13994–13995.CrossRef Topp S, Prasad V, Cianci GC, Weeks ER, Gallivan JP. A genetic toolbox for creating reversible Ca2+-sensitive materials. J Am Chem Soc 2006;128:13994–13995.CrossRef
118.
Zurück zum Zitat Kiick KL, van Hest JCM, Tirrell DA. Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew Chem Int Ed Engl 2000;39:2148–2152.CrossRef Kiick KL, van Hest JCM, Tirrell DA. Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew Chem Int Ed Engl 2000;39:2148–2152.CrossRef
119.
Zurück zum Zitat Kiick KL, Saxon E, Tirrell DA, Bertozzi CR. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A 2002;99:19–24.CrossRef Kiick KL, Saxon E, Tirrell DA, Bertozzi CR. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A 2002;99:19–24.CrossRef
120.
Zurück zum Zitat Kirshenbaum K, Carrico IS, Tirrell DA. Biosynthesis of proteins incorporating a versatile set of phenylalanine analogues. Chembiochem 2002;3:235–237.CrossRef Kirshenbaum K, Carrico IS, Tirrell DA. Biosynthesis of proteins incorporating a versatile set of phenylalanine analogues. Chembiochem 2002;3:235–237.CrossRef
121.
Zurück zum Zitat Tang Y, Ghirlanda G, Petka WA, Nakajima T, DeGrado WF, Tirrell DA. Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability. Angew Chem Int Ed Engl 2001;40:1494–1496.CrossRef Tang Y, Ghirlanda G, Petka WA, Nakajima T, DeGrado WF, Tirrell DA. Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability. Angew Chem Int Ed Engl 2001;40:1494–1496.CrossRef
122.
Zurück zum Zitat Son S, Caglar Tanrikulu I, Tirrell DA. Stabilization of bzip peptides through incorporation of fluorinated aliphatic residues. Chembiochem 2006;7:1251–1257.CrossRef Son S, Caglar Tanrikulu I, Tirrell DA. Stabilization of bzip peptides through incorporation of fluorinated aliphatic residues. Chembiochem 2006;7:1251–1257.CrossRef
123.
Zurück zum Zitat Montclare JK, Son S, Clark GA, Kumar K, Tirrell DA. Biosynthesis and stability of coiled-coil peptides containing (2S,4R)-5,5,5-trifluoroleucine and (2S,4S)-5,5,5-trifluoroleucine. Chembiochem 2009;10:84–86.CrossRef Montclare JK, Son S, Clark GA, Kumar K, Tirrell DA. Biosynthesis and stability of coiled-coil peptides containing (2S,4R)-5,5,5-trifluoroleucine and (2S,4S)-5,5,5-trifluoroleucine. Chembiochem 2009;10:84–86.CrossRef
124.
Zurück zum Zitat Kim W, McMillan RA, Snyder JP, Conticello VP. A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides. J Am Chem Soc 2005;127:18121–18132.CrossRef Kim W, McMillan RA, Snyder JP, Conticello VP. A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides. J Am Chem Soc 2005;127:18121–18132.CrossRef
125.
Zurück zum Zitat Kim WY, George A, Evans M, Conticello VP. Cotranslational incorporation of a structurally diverse series of proline analogues in an Escherichia coli expression system. Chembiochem 2004;5:928–936.CrossRef Kim WY, George A, Evans M, Conticello VP. Cotranslational incorporation of a structurally diverse series of proline analogues in an Escherichia coli expression system. Chembiochem 2004;5:928–936.CrossRef
126.
Zurück zum Zitat Kothakota S, Mason TL, Tirrell DA, Fournier MJ. Biosynthesis of a periodic protein containing 3-thienylalanine – A Step toward genetically-engineered conducting polymers. J Am Chem Soc 1995;117:536–537.CrossRef Kothakota S, Mason TL, Tirrell DA, Fournier MJ. Biosynthesis of a periodic protein containing 3-thienylalanine – A Step toward genetically-engineered conducting polymers. J Am Chem Soc 1995;117:536–537.CrossRef
127.
Zurück zum Zitat Beatty KE, Xie F, Wang Q, Tirrell DA. Selective dye-labeling of newly synthesized proteins in bacterial cells. J Am Chem Soc 2005;127:14150–14151.CrossRef Beatty KE, Xie F, Wang Q, Tirrell DA. Selective dye-labeling of newly synthesized proteins in bacterial cells. J Am Chem Soc 2005;127:14150–14151.CrossRef
128.
Zurück zum Zitat Link AJ, Vink MKS, Tirrell DA. Preparation of the functionalizable methionine surrogate azidohomoalanine via copper-catalyzed diazo transfer. Nat Protoc 2007;2:1879–1883.CrossRef Link AJ, Vink MKS, Tirrell DA. Preparation of the functionalizable methionine surrogate azidohomoalanine via copper-catalyzed diazo transfer. Nat Protoc 2007;2:1879–1883.CrossRef
129.
Zurück zum Zitat van Hest JCM, Kiick KL, Tirrell DA. Efficient incorporation of unsaturated methionine analogues into proteins in vivo. J Am Chem Soc 2000;122:1282–1288.CrossRef van Hest JCM, Kiick KL, Tirrell DA. Efficient incorporation of unsaturated methionine analogues into proteins in vivo. J Am Chem Soc 2000;122:1282–1288.CrossRef
130.
Zurück zum Zitat Link AJ, Vink MKS, Tirrell DA. Presentation and detection of azide functionality in bacterial cell surface proteins. J Am Chem Soc 2004;126:10598–10602.CrossRef Link AJ, Vink MKS, Tirrell DA. Presentation and detection of azide functionality in bacterial cell surface proteins. J Am Chem Soc 2004;126:10598–10602.CrossRef
131.
Zurück zum Zitat Carrico IS, Maskarinec SA, Heilshorn SC, Mock ML, Liu JC, Nowatzki PJ, Franck C, Ravichandran G, Tirrell DA. Lithographic patterning of photoreactive cell-adhesive proteins. J Am Chem Soc 2007;129:4874–4875.CrossRef Carrico IS, Maskarinec SA, Heilshorn SC, Mock ML, Liu JC, Nowatzki PJ, Franck C, Ravichandran G, Tirrell DA. Lithographic patterning of photoreactive cell-adhesive proteins. J Am Chem Soc 2007;129:4874–4875.CrossRef
132.
Zurück zum Zitat Nowatzki PJ, Franck C, Maskarinec SA, Ravichandran G, Tirrell DA. Mechanically tunable thin films of photosensitive artificial proteins: Preparation and characterization by nanoindentation. Macromolecules 2008;41:1839–1845.CrossRef Nowatzki PJ, Franck C, Maskarinec SA, Ravichandran G, Tirrell DA. Mechanically tunable thin films of photosensitive artificial proteins: Preparation and characterization by nanoindentation. Macromolecules 2008;41:1839–1845.CrossRef
133.
Zurück zum Zitat Zhang KC, Diehl MR, Tirrell DA. Artificial polypeptide scaffold for protein immobilization. J Am Chem Soc 2005;127:10136–10137.CrossRef Zhang KC, Diehl MR, Tirrell DA. Artificial polypeptide scaffold for protein immobilization. J Am Chem Soc 2005;127:10136–10137.CrossRef
Metadaten
Titel
Engineered Polypeptides for Tissue Engineering
verfasst von
Wei Shen
Copyright-Jahr
2011
Verlag
Springer Vienna
DOI
https://doi.org/10.1007/978-3-7091-0385-2_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.