Skip to main content

2016 | OriginalPaper | Buchkapitel

5. Engineered Stem Cell-Based Scaffolds and Patches for Heart Disorders

verfasst von : Jamie Newman, Nehal Patel, Mary Caldorera-Moore

Erschienen in: Microscale Technologies for Cell Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

According to the Center for Disease Control (CDC) cardiovascular disease is the leading cause of death in the United States and its prevalence is increasing. During a heart injury, such as myocardial infarction, cardiomyocytes are damaged and cannot be regenerated. Left untreated, this damage can have fatal results. Due to organ shortage, lack of tissue grafts for transplantation, and lack of success from current therapies, stem cell therapy and cardiac tissue engineering have emerged as potential approaches to replace damaged muscle and treat heart injuries. Research efforts in this field focus on the development of innovative biomaterials that can serve as a biomimetic scaffold for growth and differentiation of stem cells into fully functional cardiac tissue. In this chapter, stem cell research, the formation of cardiac tissue from stem cells, cardiac tissue properties, biomimetic material scaffolds, and the convergence of stem cells and biomaterials are explored.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Murphy SL, Xu J et al (2013) Deaths: final data for 2010. Natl Vital Stat Rep 61:1–118 Murphy SL, Xu J et al (2013) Deaths: final data for 2010. Natl Vital Stat Rep 61:1–118
2.
Zurück zum Zitat Go A, Mozaffarian D et al (2013) on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation 127:e1–e240CrossRef Go A, Mozaffarian D et al (2013) on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation 127:e1–e240CrossRef
3.
Zurück zum Zitat Yannas I, Lee E et al (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci 86:933–937CrossRef Yannas I, Lee E et al (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci 86:933–937CrossRef
4.
Zurück zum Zitat Atala A, Bauer SB et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246CrossRef Atala A, Bauer SB et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246CrossRef
5.
Zurück zum Zitat Baiguera S, Jungebluth P et al (2010) Tissue engineered human tracheas for in vivo implantation. Biomaterials 31:8931–8938CrossRef Baiguera S, Jungebluth P et al (2010) Tissue engineered human tracheas for in vivo implantation. Biomaterials 31:8931–8938CrossRef
6.
Zurück zum Zitat Schimming R, Schmelzeisen R (2004) Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 62:724–729CrossRef Schimming R, Schmelzeisen R (2004) Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 62:724–729CrossRef
7.
Zurück zum Zitat Waddington, C. H. (1957). The Strategy of the Genes; a Discussion of Some Aspects of Theoretical Biology, Routledge. Waddington, C. H. (1957). The Strategy of the Genes; a Discussion of Some Aspects of Theoretical Biology, Routledge.
8.
Zurück zum Zitat Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morph 10:622–640 Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morph 10:622–640
9.
Zurück zum Zitat Wilmut I, Schnieke AE et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813CrossRef Wilmut I, Schnieke AE et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813CrossRef
10.
Zurück zum Zitat Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRef
11.
Zurück zum Zitat Kelaini S, Cochrane A et al (2014) Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning 7:19–29 Kelaini S, Cochrane A et al (2014) Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning 7:19–29
12.
Zurück zum Zitat Pera MF, Trounson AO (2004) Human embryonic stem cells: prospects for development. Development 131:5515–5525CrossRef Pera MF, Trounson AO (2004) Human embryonic stem cells: prospects for development. Development 131:5515–5525CrossRef
13.
Zurück zum Zitat Rossant J (2008) Stem cells and early lineage development. Cell 132:527–531CrossRef Rossant J (2008) Stem cells and early lineage development. Cell 132:527–531CrossRef
14.
15.
Zurück zum Zitat Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678CrossRef Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678CrossRef
16.
Zurück zum Zitat Yamanaka S, Li J et al (2008) Pluripotency of embryonic stem cells. Cell Tissue Res 331:5–22CrossRef Yamanaka S, Li J et al (2008) Pluripotency of embryonic stem cells. Cell Tissue Res 331:5–22CrossRef
17.
Zurück zum Zitat Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRef Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRef
18.
Zurück zum Zitat Thomson JA (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRef Thomson JA (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRef
19.
Zurück zum Zitat Zaffran S (2002) Early signals in cardiac development. Circ Res 91:457–469CrossRef Zaffran S (2002) Early signals in cardiac development. Circ Res 91:457–469CrossRef
20.
Zurück zum Zitat Jacot JG, Martin JC et al (2010) Mechanobiology of cardiomyocyte development. J Biomech 43:93–98CrossRef Jacot JG, Martin JC et al (2010) Mechanobiology of cardiomyocyte development. J Biomech 43:93–98CrossRef
21.
Zurück zum Zitat Go AS, Mozaffarian D et al (2014) Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation 129:e28–e292CrossRef Go AS, Mozaffarian D et al (2014) Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation 129:e28–e292CrossRef
22.
Zurück zum Zitat Bergmann O, Bhardwaj RD et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102CrossRef Bergmann O, Bhardwaj RD et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102CrossRef
23.
Zurück zum Zitat Bergmann O, Jovinge S (2014) Cardiac regeneration in vivo: mending the heart from within? Stem Cell Res 13(3 Pt B):523–531CrossRef Bergmann O, Jovinge S (2014) Cardiac regeneration in vivo: mending the heart from within? Stem Cell Res 13(3 Pt B):523–531CrossRef
24.
Zurück zum Zitat Hsieh PC, Segers VF et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974CrossRef Hsieh PC, Segers VF et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974CrossRef
25.
Zurück zum Zitat Beltrami AP, Barlucchi L et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776CrossRef Beltrami AP, Barlucchi L et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776CrossRef
26.
Zurück zum Zitat Orlic D, Kajstura J et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349CrossRef Orlic D, Kajstura J et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349CrossRef
27.
Zurück zum Zitat Balsam LB, Wagers AJ et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673CrossRef Balsam LB, Wagers AJ et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673CrossRef
28.
Zurück zum Zitat Murry CE, Soonpaa MH et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668CrossRef Murry CE, Soonpaa MH et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668CrossRef
29.
Zurück zum Zitat Soonpaa MH, Rubart M et al (2013) Challenges measuring cardiomyocyte renewal. Biochim Biophys Acta 1833:799–803CrossRef Soonpaa MH, Rubart M et al (2013) Challenges measuring cardiomyocyte renewal. Biochim Biophys Acta 1833:799–803CrossRef
30.
Zurück zum Zitat Murry CE, Reinecke H et al (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47:1777–1785CrossRef Murry CE, Reinecke H et al (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47:1777–1785CrossRef
31.
Zurück zum Zitat Kattman SJ, Witty AD et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240CrossRef Kattman SJ, Witty AD et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240CrossRef
32.
Zurück zum Zitat Caspi O, Lesman A et al (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100:263–272CrossRef Caspi O, Lesman A et al (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100:263–272CrossRef
33.
Zurück zum Zitat Zhang J, Wilson GF et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41CrossRef Zhang J, Wilson GF et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41CrossRef
34.
Zurück zum Zitat Bettiol E, Sartiani L et al (2007) Fetal bovine serum enables cardiac differentiation of human embryonic stem cells. Differentiation 75:669–681CrossRef Bettiol E, Sartiani L et al (2007) Fetal bovine serum enables cardiac differentiation of human embryonic stem cells. Differentiation 75:669–681CrossRef
35.
Zurück zum Zitat Doetschman TC, Eistetter H et al (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45 Doetschman TC, Eistetter H et al (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45
36.
Zurück zum Zitat Kehat I, Kenyagin-Karsenti D et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414CrossRef Kehat I, Kenyagin-Karsenti D et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414CrossRef
37.
Zurück zum Zitat Ng ES, Davis RP et al (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106:1601–1603CrossRef Ng ES, Davis RP et al (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106:1601–1603CrossRef
38.
Zurück zum Zitat Bauwens CL, Peerani R et al (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310CrossRef Bauwens CL, Peerani R et al (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310CrossRef
39.
Zurück zum Zitat Laflamme MA, Chen KY et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024CrossRef Laflamme MA, Chen KY et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024CrossRef
40.
Zurück zum Zitat Takahashi T, Lord B et al (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916CrossRef Takahashi T, Lord B et al (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916CrossRef
41.
Zurück zum Zitat Xu C (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508CrossRef Xu C (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508CrossRef
42.
Zurück zum Zitat Wobus AM, Kaomei G et al (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29:1525–1539CrossRef Wobus AM, Kaomei G et al (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29:1525–1539CrossRef
43.
Zurück zum Zitat Buggisch M, Ateghang B et al (2007) Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J Cell Sci 120:885–894CrossRef Buggisch M, Ateghang B et al (2007) Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J Cell Sci 120:885–894CrossRef
44.
Zurück zum Zitat Sauer H, Rahimi G et al (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476:218–223CrossRef Sauer H, Rahimi G et al (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476:218–223CrossRef
45.
Zurück zum Zitat Sharifpanah F, Wartenberg M et al (2008) Peroxisome proliferator-activated receptor alpha agonists enhance cardiomyogenesis of mouse ES cells by utilization of a reactive oxygen species-dependent mechanism. Stem Cells 26:64–71CrossRef Sharifpanah F, Wartenberg M et al (2008) Peroxisome proliferator-activated receptor alpha agonists enhance cardiomyogenesis of mouse ES cells by utilization of a reactive oxygen species-dependent mechanism. Stem Cells 26:64–71CrossRef
46.
Zurück zum Zitat Sachinidis A, Schwengberg S et al (2006) Identification of small signalling molecules promoting cardiac-specific differentiation of mouse embryonic stem cells. Cell Physiol Biochem 18:303–314CrossRef Sachinidis A, Schwengberg S et al (2006) Identification of small signalling molecules promoting cardiac-specific differentiation of mouse embryonic stem cells. Cell Physiol Biochem 18:303–314CrossRef
47.
Zurück zum Zitat Willems E, Lanier M et al (2011) A chemical biology approach to myocardial regeneration. J Cardiovasc Transl Res 4:340–350CrossRef Willems E, Lanier M et al (2011) A chemical biology approach to myocardial regeneration. J Cardiovasc Transl Res 4:340–350CrossRef
48.
Zurück zum Zitat Mummery C, Ward-van Oostwaard D et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740CrossRef Mummery C, Ward-van Oostwaard D et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740CrossRef
49.
Zurück zum Zitat Passier R, Oostwaard DW et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780CrossRef Passier R, Oostwaard DW et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780CrossRef
50.
Zurück zum Zitat Graichen R, Xu X et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370CrossRef Graichen R, Xu X et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370CrossRef
51.
Zurück zum Zitat Anderson D, Self T et al (2007) Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 15:2027–2036CrossRef Anderson D, Self T et al (2007) Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 15:2027–2036CrossRef
52.
Zurück zum Zitat Addis RC, Epstein JA (2013) Induced regeneration – the progress and promise of direct reprogramming for heart repair. Nat Med 19:829–836CrossRef Addis RC, Epstein JA (2013) Induced regeneration – the progress and promise of direct reprogramming for heart repair. Nat Med 19:829–836CrossRef
53.
Zurück zum Zitat Ieda M, Fu JD et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386CrossRef Ieda M, Fu JD et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386CrossRef
54.
Zurück zum Zitat Miki K, Yoshida Y et al (2013) Making steady progress on direct cardiac reprogramming toward clinical application. Circ Res 113:13–15CrossRef Miki K, Yoshida Y et al (2013) Making steady progress on direct cardiac reprogramming toward clinical application. Circ Res 113:13–15CrossRef
55.
Zurück zum Zitat Robertson C, Tran DD et al (2013) Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31:829–837CrossRef Robertson C, Tran DD et al (2013) Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31:829–837CrossRef
56.
Zurück zum Zitat Vozzi G, Flaim C et al (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540CrossRef Vozzi G, Flaim C et al (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540CrossRef
57.
Zurück zum Zitat Bettinger CJ, Weinberg EJ et al (2006) Three-dimensional microfluidic tissue‐engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18:165–169CrossRef Bettinger CJ, Weinberg EJ et al (2006) Three-dimensional microfluidic tissue‐engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18:165–169CrossRef
58.
Zurück zum Zitat Shachar M, Tsur-Gang O et al (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7:152–162CrossRef Shachar M, Tsur-Gang O et al (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7:152–162CrossRef
59.
Zurück zum Zitat Sapir Y, Kryukov O et al (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32:1838–1847CrossRef Sapir Y, Kryukov O et al (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32:1838–1847CrossRef
60.
Zurück zum Zitat Maidhof R, Tandon N et al (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6:e12–e23CrossRef Maidhof R, Tandon N et al (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6:e12–e23CrossRef
61.
Zurück zum Zitat Radisic M, Marsano A et al (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3:719–738CrossRef Radisic M, Marsano A et al (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3:719–738CrossRef
62.
Zurück zum Zitat Lee JM, Boughner DR (1985) Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res 57:475–481CrossRef Lee JM, Boughner DR (1985) Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res 57:475–481CrossRef
63.
Zurück zum Zitat Patterson JT, Gilliland T et al (2012) Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 7:409–419CrossRef Patterson JT, Gilliland T et al (2012) Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 7:409–419CrossRef
64.
Zurück zum Zitat Engelmayr GC, Cheng M et al (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7:1003–1010CrossRef Engelmayr GC, Cheng M et al (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7:1003–1010CrossRef
65.
Zurück zum Zitat Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRef Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRef
66.
Zurück zum Zitat Resnick DJ, Sreenivasan S et al (2005) Step & flash imprint lithography. Mater Today 8:34–42CrossRef Resnick DJ, Sreenivasan S et al (2005) Step & flash imprint lithography. Mater Today 8:34–42CrossRef
67.
Zurück zum Zitat Koh W-G, Revzin A et al (2002) Poly (ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18:2459–2462CrossRef Koh W-G, Revzin A et al (2002) Poly (ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18:2459–2462CrossRef
68.
Zurück zum Zitat Chou SY, Krauss PR et al (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116CrossRef Chou SY, Krauss PR et al (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116CrossRef
69.
Zurück zum Zitat Chou SY, Krauss PR et al (1996) 25-Nanometer resolution. Science 272:85–87CrossRef Chou SY, Krauss PR et al (1996) 25-Nanometer resolution. Science 272:85–87CrossRef
70.
Zurück zum Zitat Bacher W, Bade K et al (1998) Fabrication of LIGA mold inserts. Microsyst Technol 4:117–119CrossRef Bacher W, Bade K et al (1998) Fabrication of LIGA mold inserts. Microsyst Technol 4:117–119CrossRef
71.
Zurück zum Zitat Colburn M, Grot A et al (2001) Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process. J Vac Sci Technol B 19:2162–2172CrossRef Colburn M, Grot A et al (2001) Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process. J Vac Sci Technol B 19:2162–2172CrossRef
72.
Zurück zum Zitat Haisma J, Verheijen M et al (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B 14:4124–4128CrossRef Haisma J, Verheijen M et al (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B 14:4124–4128CrossRef
73.
Zurück zum Zitat Caldorera-Moore M, Kang MK et al (2011) Swelling behavior of nanoscale, shape-and size-specific, hydrogel particles fabricated using imprint lithography. Soft Matter 7:2879–2887CrossRef Caldorera-Moore M, Kang MK et al (2011) Swelling behavior of nanoscale, shape-and size-specific, hydrogel particles fabricated using imprint lithography. Soft Matter 7:2879–2887CrossRef
74.
Zurück zum Zitat Glangchai LC, Caldorera-Moore M et al (2008) Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Control Release 125:263–272CrossRef Glangchai LC, Caldorera-Moore M et al (2008) Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Control Release 125:263–272CrossRef
75.
Zurück zum Zitat Bender M, Otto M et al (2000) Fabrication of nanostructures using a UV-based imprint technique. Microelectron Eng 53:233–236CrossRef Bender M, Otto M et al (2000) Fabrication of nanostructures using a UV-based imprint technique. Microelectron Eng 53:233–236CrossRef
76.
Zurück zum Zitat Gale MT (1997) Replication techniques for diffractive optical elements. Microelectron Eng 34:321–339CrossRef Gale MT (1997) Replication techniques for diffractive optical elements. Microelectron Eng 34:321–339CrossRef
77.
Zurück zum Zitat Bender, M., Otto, M., et al. (2000) Fabrication of nanostructures using a UV-based imprint technique. Microelectronic Engineering 53:233-236 Bender, M., Otto, M., et al. (2000) Fabrication of nanostructures using a UV-based imprint technique. Microelectronic Engineering 53:233-236
78.
Zurück zum Zitat Gale, M. T. (1997) Replication techniques for diffractive optical elements. Microelectronic Engineering 34:321-339 Gale, M. T. (1997) Replication techniques for diffractive optical elements. Microelectronic Engineering 34:321-339
79.
Zurück zum Zitat Mikos AG, Lyman MD et al (1994) Wetting of poly (l-lactic acid) and poly (dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58CrossRef Mikos AG, Lyman MD et al (1994) Wetting of poly (l-lactic acid) and poly (dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58CrossRef
80.
Zurück zum Zitat Anderson JR, Chiu DT et al (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40CrossRef Anderson JR, Chiu DT et al (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40CrossRef
81.
Zurück zum Zitat Folch A, Jo B-H et al (2000) Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res 52:346–353CrossRef Folch A, Jo B-H et al (2000) Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res 52:346–353CrossRef
82.
Zurück zum Zitat Chiu DT, Jeon NL et al (2000) Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci 97:2408–2413CrossRef Chiu DT, Jeon NL et al (2000) Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci 97:2408–2413CrossRef
83.
Zurück zum Zitat Borenstein JT, Terai H et al (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175CrossRef Borenstein JT, Terai H et al (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175CrossRef
84.
Zurück zum Zitat Nuttelman CR, Henry SM et al (2002) Synthesis and characterization of photocrosslinkable, degradable poly (vinyl alcohol)-based tissue engineering scaffolds. Biomaterials 23:3617–3626CrossRef Nuttelman CR, Henry SM et al (2002) Synthesis and characterization of photocrosslinkable, degradable poly (vinyl alcohol)-based tissue engineering scaffolds. Biomaterials 23:3617–3626CrossRef
85.
Zurück zum Zitat Hersel U, Dahmen C et al (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRef Hersel U, Dahmen C et al (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRef
86.
Zurück zum Zitat Liu Tsang V, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647CrossRef Liu Tsang V, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647CrossRef
87.
Zurück zum Zitat Peppas N, Bures P et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRef Peppas N, Bures P et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRef
88.
Zurück zum Zitat Mann BK, Gobin AS et al (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051CrossRef Mann BK, Gobin AS et al (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051CrossRef
89.
Zurück zum Zitat Elisseeff J, McIntosh W et al (2000) Photoencapsulation of chondrocytes in poly (ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51:164–171CrossRef Elisseeff J, McIntosh W et al (2000) Photoencapsulation of chondrocytes in poly (ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51:164–171CrossRef
90.
Zurück zum Zitat Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly (ethylene glycol) hydrogels. J Biomed Mater Res 59:63–72CrossRef Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly (ethylene glycol) hydrogels. J Biomed Mater Res 59:63–72CrossRef
91.
Zurück zum Zitat Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39:266–276CrossRef Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39:266–276CrossRef
92.
Zurück zum Zitat Behravesh E, Zygourakis K et al (2003) Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly (propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J Biomed Mater Res A 65:260–270CrossRef Behravesh E, Zygourakis K et al (2003) Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly (propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J Biomed Mater Res A 65:260–270CrossRef
93.
Zurück zum Zitat Schmedlen RH, Masters KS et al (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23:4325–4332CrossRef Schmedlen RH, Masters KS et al (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23:4325–4332CrossRef
94.
Zurück zum Zitat Kao WJ, Hubbell JA (1998) Murine macrophage behavior on peptide-grafted polyethyleneglycol-containing networks. Biotechnol Bioeng 59:2–9CrossRef Kao WJ, Hubbell JA (1998) Murine macrophage behavior on peptide-grafted polyethyleneglycol-containing networks. Biotechnol Bioeng 59:2–9CrossRef
95.
Zurück zum Zitat Koo LY, Irvine DJ et al (2002) Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 115:1423–1433 Koo LY, Irvine DJ et al (2002) Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 115:1423–1433
96.
Zurück zum Zitat Alsberg E, Anderson KW et al (2002) Engineering growing tissues. Proc Natl Acad Sci 99:12025–12030CrossRef Alsberg E, Anderson KW et al (2002) Engineering growing tissues. Proc Natl Acad Sci 99:12025–12030CrossRef
97.
Zurück zum Zitat Sawhney AS, Pathak CP et al (1994) Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J Biomed Mater Res 28:831–838CrossRef Sawhney AS, Pathak CP et al (1994) Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J Biomed Mater Res 28:831–838CrossRef
98.
Zurück zum Zitat Liu VA, Bhatia SN (2002) Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices 4:257–266CrossRef Liu VA, Bhatia SN (2002) Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices 4:257–266CrossRef
99.
Zurück zum Zitat Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRef Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRef
100.
Zurück zum Zitat Sakiyama SE, Schense JC et al (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB J 13:2214–2224 Sakiyama SE, Schense JC et al (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB J 13:2214–2224
101.
Zurück zum Zitat Halstenberg S, Panitch A et al (2002) Biologically engineered protein-graft-poly (ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3:710–723CrossRef Halstenberg S, Panitch A et al (2002) Biologically engineered protein-graft-poly (ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3:710–723CrossRef
102.
Zurück zum Zitat Lutolf M, Lauer-Fields J et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci 100:5413–5418CrossRef Lutolf M, Lauer-Fields J et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci 100:5413–5418CrossRef
103.
Zurück zum Zitat McDevitt TC, Angello JC et al (2002) In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J Biomed Mater Res 60:472–479CrossRef McDevitt TC, Angello JC et al (2002) In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J Biomed Mater Res 60:472–479CrossRef
104.
Zurück zum Zitat Khademhosseini A, Eng G et al (2007) Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed Microdevices 9:149–157CrossRef Khademhosseini A, Eng G et al (2007) Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed Microdevices 9:149–157CrossRef
105.
Zurück zum Zitat Chiu L, Janic K et al (2012) Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel. Int J Artif Organs 35:237–250CrossRef Chiu L, Janic K et al (2012) Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel. Int J Artif Organs 35:237–250CrossRef
106.
Zurück zum Zitat Annabi N, Tsang K et al (2013) Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv Funct Mater 23:4950–4959CrossRef Annabi N, Tsang K et al (2013) Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv Funct Mater 23:4950–4959CrossRef
107.
Zurück zum Zitat Mordwinkin NM, Burridge PW et al (2013) A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 6:22–30CrossRef Mordwinkin NM, Burridge PW et al (2013) A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 6:22–30CrossRef
108.
Zurück zum Zitat Feinberg, A. W., Ripplinger, C. M., et al. (2013) Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Reports 1:387–96 Feinberg, A. W., Ripplinger, C. M., et al. (2013) Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Reports 1:387–96
109.
Zurück zum Zitat Binah, O., Dolnikov, K., et al. (2007) Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes. J Electrocardiol 40:S192–6 Binah, O., Dolnikov, K., et al. (2007) Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes. J Electrocardiol 40:S192–6
110.
Zurück zum Zitat Sirish, P., Lopez, J. E., et al. (2012) MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts. J Mol Cell Cardiol 52:264–72 Sirish, P., Lopez, J. E., et al. (2012) MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts. J Mol Cell Cardiol 52:264–72
111.
Zurück zum Zitat Kehat, I. (2002) High-Resolution Electrophysiological Assessment of Human Embryonic Stem Cell-Derived Cardiomyocytes: A Novel In Vitro Model for the Study of Conduction. Circulation Research 91:659–661 Kehat, I. (2002) High-Resolution Electrophysiological Assessment of Human Embryonic Stem Cell-Derived Cardiomyocytes: A Novel In Vitro Model for the Study of Conduction. Circulation Research 91:659–661
112.
Zurück zum Zitat Dolnikov, K., Shilkrut, M., et al. (2006) Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Stem Cells 24:236–45 Dolnikov, K., Shilkrut, M., et al. (2006) Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Stem Cells 24:236–45
Metadaten
Titel
Engineered Stem Cell-Based Scaffolds and Patches for Heart Disorders
verfasst von
Jamie Newman
Nehal Patel
Mary Caldorera-Moore
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-20726-1_5

Neuer Inhalt