Skip to main content

10.10.2017 | Engineering + Development | News | Onlineartikel

Better Planning of Human-Robot Workspaces

Nadine Klein

Fraunhofer IFF and system integrator Symacon are jointly developing new tools and methods for preliminary planning of industrial robot cells in order to simplify the safe integration of human-robot workspaces into the production process.

Collaborative robots can capture their surroundings through sensor technology and respond much more flexibly to events than the first generation of industrial robots. These robots can therefore work directly with persons without the risk of inflicting personal injury. In this role, they support people in their work and ensure growing quality and efficiency in production. However, they have still not found widespread application in industry.

The strict safety requirements for collaborative robot systems pose major challenges for system integrators and plant planners. In every case, it is necessary to clarify in detail the impact of the various safety sensors on the specific process in which the robot is integrated, on the immediate environment and on the type of human-robot collaboration (HRC). The robot must neither injure people in the vicinity nor significantly disrupt the production process by changing movement in response to a person.

Testing and developing new tools

The problem is that the existing tools are not adapted to the relevant safety standards for collaboration robots. For example, critical safety aspects for state-of-the-art robotics and assistance systems cannot be considered at this stage in the planning phase since the required planning resources, such as software tools or processes, are missing. Consequently, the impact of integrating such systems cannot be tested until later, making it difficult for companies to plan their deployment flexibly. 

Together with system integrator Symacon, Fraunhofer IFF is bridging this methodological gap by developing, testing and integrating new tools into real-world planning processes in a project on innovative development tools for the efficient planning of industrial applications with human-robot collaboration (MR_KOOP, Menschen-Roboter-Kooperation/HRC). The goal is to provide companies with a basic tool for planning robot cells with special HRC functions. This should enable early evaluation of the safety requirements for systems that implement the "Safety-Related Monitored Stop" and "Speed and Separation Monitoring" safety modes in accordance with ISO/TS 15066.

Weiterführende Themen

Die Hintergründe zu diesem Inhalt

Das könnte Sie auch interessieren

Premium Partner

in-adhesivesMKVSNeuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.



Künstliche Intelligenz und die Potenziale des maschinellen Lernens für die Industrie

Maschinelles Lernen ist die Schlüsseltechnologie für intelligente Systeme. Besonders erfolgreich ist in den letzten Jahren das Lernen tiefer Modelle aus großen Datenmengen – „Deep Learning“. Mit dem Internet der Dinge rollt die nächste, noch größere Datenwelle auf uns zu. Hier bietet die Künstliche Intelligenz besondere Chancen für die deutsche Industrie, wenn sie schnell genug in die Digitalisierung einsteigt.
Jetzt gratis downloaden!


Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.