Skip to main content

2024 | OriginalPaper | Buchkapitel

5. Engineering Applications

verfasst von : Guohua Liu

Erschienen in: Thermoplasmonics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This section discusses the diverse applications of thermoplasmonics including life sciences, optoelectronic information science, energy, chemistry, environmental studies, and material science. Specific areas of application include protein denaturation, photothermal cancer therapy, drug and gene delivery, heat-assisted magnetic recording, photoacoustic imaging, plasmonic-induced nanochemistry, photothermal imaging, solar steam generation, and experiments with single living cells. Each application is discussed in detail, focusing on the origins of the associated techniques, key pioneering studies that introduced significant variations or new concepts, the current advancements in the field, and the challenges that persist.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Andreozzi, M. Iasiello, C. Tucci, An overview of mathematical models and modulated-heating protocols for thermal ablation 52, 489–541 (2020) A. Andreozzi, M. Iasiello, C. Tucci, An overview of mathematical models and modulated-heating protocols for thermal ablation 52, 489–541 (2020)
2.
Zurück zum Zitat G. Baffou, F. Cichos, R. Quidant, Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020)PubMedCrossRef G. Baffou, F. Cichos, R. Quidant, Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020)PubMedCrossRef
3.
Zurück zum Zitat G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2012)CrossRef G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2012)CrossRef
4.
Zurück zum Zitat X. Wu, Y. Suo, H. Shi, R. Liu, F. Wu, T. Wang, L. Ma, H. Liu, Z. Cheng, Deep-tissue photothermal therapy using laser illumination at NIR-IIa window. Nano-micro Lett. 12, 38 (2020)CrossRef X. Wu, Y. Suo, H. Shi, R. Liu, F. Wu, T. Wang, L. Ma, H. Liu, Z. Cheng, Deep-tissue photothermal therapy using laser illumination at NIR-IIa window. Nano-micro Lett. 12, 38 (2020)CrossRef
5.
Zurück zum Zitat J. Chen, C. Ning, Z. Zhou, P. Yu, Y. Zhu, G. Tan, C. Mao, Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 99, 1–26 (2019)PubMedCrossRef J. Chen, C. Ning, Z. Zhou, P. Yu, Y. Zhu, G. Tan, C. Mao, Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 99, 1–26 (2019)PubMedCrossRef
6.
Zurück zum Zitat J. González-Colsa, A. Kuzyk, P. Albella, On the Photothermal Response of DNA-Au Core/Shell Nanotoroids as Potential Agents for Photothermal Therapies, Small Structures (2024) J. González-Colsa, A. Kuzyk, P. Albella, On the Photothermal Response of DNA-Au Core/Shell Nanotoroids as Potential Agents for Photothermal Therapies, Small Structures (2024)
7.
Zurück zum Zitat A.B. Bucharskaya, G.N. Maslyakova, M.L. Chekhonatskaya, G.S. Terentyuk, N.A. Navolokin, B.N. Khlebtsov, N.G. Khlebtsov, A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Plasmonic photothermal therapy: approaches to advanced strategy. Lasers Surg. Med. 50, 1025–1033 (2018)PubMedCrossRef A.B. Bucharskaya, G.N. Maslyakova, M.L. Chekhonatskaya, G.S. Terentyuk, N.A. Navolokin, B.N. Khlebtsov, N.G. Khlebtsov, A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Plasmonic photothermal therapy: approaches to advanced strategy. Lasers Surg. Med. 50, 1025–1033 (2018)PubMedCrossRef
8.
Zurück zum Zitat Y. Shen, H.D.A. Santos, E.C. Ximendes, J. Lifante, A. Sanz‐Portilla, L. Monge, N. Fernández, I. Chaves‐Coira, C. Jacinto, C.D.S. Brites, L.D. Carlos, A. Benayas, M.C. Iglesias‐de la Cruz, D. Jaque, Ag2S nanoheaters with multiparameter sensing for reliable thermal feedback during in vivo tumor therapy. Adv. Funct. Mater. 30 (2020) Y. Shen, H.D.A. Santos, E.C. Ximendes, J. Lifante, A. Sanz‐Portilla, L. Monge, N. Fernández, I. Chaves‐Coira, C. Jacinto, C.D.S. Brites, L.D. Carlos, A. Benayas, M.C. Iglesias‐de la Cruz, D. Jaque, Ag2S nanoheaters with multiparameter sensing for reliable thermal feedback during in vivo tumor therapy. Adv. Funct. Mater. 30 (2020)
9.
Zurück zum Zitat L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003)PubMedPubMedCentralCrossRef L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003)PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat H. Chatterjee, D.S. Rahman, M. Sengupta, S.K. Ghosh, Gold nanostars in plasmonic photothermal therapy: the role of tip heads in the thermoplasmonic landscape. J. Phys. Chem. C 122, 13082–13094 (2018)CrossRef H. Chatterjee, D.S. Rahman, M. Sengupta, S.K. Ghosh, Gold nanostars in plasmonic photothermal therapy: the role of tip heads in the thermoplasmonic landscape. J. Phys. Chem. C 122, 13082–13094 (2018)CrossRef
11.
Zurück zum Zitat M. Ha, S.H. Nam, K. Sim, S.E. Chong, J. Kim, Y. Kim, Y. Lee, J.M. Nam, Highly efficient photothermal therapy with cell-penetrating peptide-modified bumpy au triangular nanoprisms using low laser power and low probe dose. Nano Lett. 21, 731–739 (2021)PubMedCrossRef M. Ha, S.H. Nam, K. Sim, S.E. Chong, J. Kim, Y. Kim, Y. Lee, J.M. Nam, Highly efficient photothermal therapy with cell-penetrating peptide-modified bumpy au triangular nanoprisms using low laser power and low probe dose. Nano Lett. 21, 731–739 (2021)PubMedCrossRef
12.
Zurück zum Zitat J. Chen, M. Gong, Y. Fan, J. Feng, L. Han, H.L. Xin, M. Cao, Q. Zhang, D. Zhang, D. Lei, Y. Yin, Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano 16, 910–920 (2022)PubMedCrossRef J. Chen, M. Gong, Y. Fan, J. Feng, L. Han, H.L. Xin, M. Cao, Q. Zhang, D. Zhang, D. Lei, Y. Yin, Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano 16, 910–920 (2022)PubMedCrossRef
13.
Zurück zum Zitat X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer, nature reviews. Clin. Oncol. 17, 657–674 (2020) X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer, nature reviews. Clin. Oncol. 17, 657–674 (2020)
14.
Zurück zum Zitat C. Xu, K. Pu, Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50, 1111–1137 (2021)PubMedCrossRef C. Xu, K. Pu, Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50, 1111–1137 (2021)PubMedCrossRef
15.
Zurück zum Zitat X. Cui, Q. Ruan, X. Zhuo, X. Xia, J. Hu, R. Fu, Y. Li, J. Wang, H. Xu, Photothermal nanomaterials: a powerful light-to-heat converter. Chem. Rev. 123, 6891–6952 (2023)PubMedPubMedCentralCrossRef X. Cui, Q. Ruan, X. Zhuo, X. Xia, J. Hu, R. Fu, Y. Li, J. Wang, H. Xu, Photothermal nanomaterials: a powerful light-to-heat converter. Chem. Rev. 123, 6891–6952 (2023)PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat C. Ayala-Orozco, C. Urban, M.W. Knight, A.S. Urban, O. Neumann, S.W. Bishnoi, S. Mukherjee, A.M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N.J. Halas, A. Joshi, Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8, 6372–6381 (2014)PubMedPubMedCentralCrossRef C. Ayala-Orozco, C. Urban, M.W. Knight, A.S. Urban, O. Neumann, S.W. Bishnoi, S. Mukherjee, A.M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N.J. Halas, A. Joshi, Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8, 6372–6381 (2014)PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat N. Fernandes, C.F. Rodrigues, A.F. Moreira, I.J. Correia, Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomaterials science 8, 2990–3020 (2020)PubMedCrossRef N. Fernandes, C.F. Rodrigues, A.F. Moreira, I.J. Correia, Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomaterials science 8, 2990–3020 (2020)PubMedCrossRef
18.
Zurück zum Zitat J. Li, W. Zhang, W. Ji, J. Wang, N. Wang, W. Wu, Q. Wu, X. Hou, W. Hu, L. Li, Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications. J. Mater. Chem. B 9, 7909–7926 (2021)PubMedCrossRef J. Li, W. Zhang, W. Ji, J. Wang, N. Wang, W. Wu, Q. Wu, X. Hou, W. Hu, L. Li, Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications. J. Mater. Chem. B 9, 7909–7926 (2021)PubMedCrossRef
19.
Zurück zum Zitat Y. Ma, Y. Zhang, X. Li, Y. Zhao, M. Li, W. Jiang, X. Tang, J. Dou, L. Lu, F. Wang, Y. Wang, Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 13, 11967–11980 (2019)PubMedCrossRef Y. Ma, Y. Zhang, X. Li, Y. Zhao, M. Li, W. Jiang, X. Tang, J. Dou, L. Lu, F. Wang, Y. Wang, Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 13, 11967–11980 (2019)PubMedCrossRef
20.
Zurück zum Zitat H. Sun, Q. Zhang, J. Li, S. Peng, X. Wang, R. Cai, Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 37, 101073 (2021)CrossRef H. Sun, Q. Zhang, J. Li, S. Peng, X. Wang, R. Cai, Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 37, 101073 (2021)CrossRef
21.
Zurück zum Zitat D.S. Wagner, N.A. Delk, E.Y. Lukianova-Hleb, J.H. Hafner, M.C. Farach-Carson, D.O. Lapotko, The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials 31, 7567–7574 (2010)PubMedPubMedCentralCrossRef D.S. Wagner, N.A. Delk, E.Y. Lukianova-Hleb, J.H. Hafner, M.C. Farach-Carson, D.O. Lapotko, The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials 31, 7567–7574 (2010)PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Y. Wang, K.C. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S.Y. Liu, M. Li, P. Kim, Z.Y. Li, L.V. Wang, Y. Liu, Y. Xia, Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7, 2068–2077 (2013)PubMedPubMedCentralCrossRef Y. Wang, K.C. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S.Y. Liu, M. Li, P. Kim, Z.Y. Li, L.V. Wang, Y. Liu, Y. Xia, Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7, 2068–2077 (2013)PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)PubMedCrossRef L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)PubMedCrossRef
24.
Zurück zum Zitat A. Akouibaa, R. Masrour, S. Mordane, M. Benhamou, A. El Assyry, A. Derouiche, Optical and thermo-plasmonic properties of spherical and hollow gold nanoparticles injected in cell organelles. J. Drug Deliv. Sci. Technol. 95, 105559 (2024)CrossRef A. Akouibaa, R. Masrour, S. Mordane, M. Benhamou, A. El Assyry, A. Derouiche, Optical and thermo-plasmonic properties of spherical and hollow gold nanoparticles injected in cell organelles. J. Drug Deliv. Sci. Technol. 95, 105559 (2024)CrossRef
25.
Zurück zum Zitat M. Izci, C. Maksoudian, B.B. Manshian, S.J. Soenen, The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev. 121, 1746–1803 (2021)PubMedPubMedCentralCrossRef M. Izci, C. Maksoudian, B.B. Manshian, S.J. Soenen, The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev. 121, 1746–1803 (2021)PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat E.A. Sykes, J. Chen, G. Zheng, W.C. Chan, Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8, 5696–5706 (2014)PubMedCrossRef E.A. Sykes, J. Chen, G. Zheng, W.C. Chan, Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8, 5696–5706 (2014)PubMedCrossRef
27.
Zurück zum Zitat J.T. Jorgensen, K. Norregaard, M. Simon Martin, L.B. Oddershede, A. Kjaer, Non-invasive early response monitoring of nanoparticle-assisted photothermal cancer therapy using (18)F-FDG, (18)F-FLT, and (18)F-FET PET/CT imaging. Nanotheranostics 2, 201–210 (2018) J.T. Jorgensen, K. Norregaard, M. Simon Martin, L.B. Oddershede, A. Kjaer, Non-invasive early response monitoring of nanoparticle-assisted photothermal cancer therapy using (18)F-FDG, (18)F-FLT, and (18)F-FET PET/CT imaging. Nanotheranostics 2, 201–210 (2018)
28.
Zurück zum Zitat Yang, D., Yang, G., Yang, P., Lv, R., Gai, S., Li, C., He, F., Lin, J., Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv. Funct. Mater. 27 (2017) Yang, D., Yang, G., Yang, P., Lv, R., Gai, S., Li, C., He, F., Lin, J., Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv. Funct. Mater. 27 (2017)
29.
Zurück zum Zitat J. Zhou, Y. Jiang, S. Hou, P.K. Upputuri, D. Wu, J. Li, P. Wang, X. Zhen, M. Pramanik, K. Pu, H. Duan, Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano 12, 2643–2651 (2018)PubMedCrossRef J. Zhou, Y. Jiang, S. Hou, P.K. Upputuri, D. Wu, J. Li, P. Wang, X. Zhen, M. Pramanik, K. Pu, H. Duan, Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano 12, 2643–2651 (2018)PubMedCrossRef
30.
Zurück zum Zitat Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng, Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016)PubMedPubMedCentralCrossRef Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng, Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016)PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat B. Liu, C. Li, Z. Cheng, Z. Hou, S. Huang, J. Lin, Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater. Sci. 4, 890–909 (2016)PubMedCrossRef B. Liu, C. Li, Z. Cheng, Z. Hou, S. Huang, J. Lin, Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater. Sci. 4, 890–909 (2016)PubMedCrossRef
32.
Zurück zum Zitat S. Son, J. Kim, J. Kim, B. Kim, J. Lee, Y. Kim, M. Li, H. Kang, J.S. Kim, Cancer therapeutics based on diverse energy sources. Chem. Soc. Rev. 51, 8201–8215 (2022)PubMedCrossRef S. Son, J. Kim, J. Kim, B. Kim, J. Lee, Y. Kim, M. Li, H. Kang, J.S. Kim, Cancer therapeutics based on diverse energy sources. Chem. Soc. Rev. 51, 8201–8215 (2022)PubMedCrossRef
33.
Zurück zum Zitat A.M.G. edited by Ecaterina Andronescu, nanostructures in therapeutic medicine series: nanostructures for drug delivery, Copyright © 2017 Elsevier Inc. All rights reserved, ISBN: 978-0-323-46143-6 (2017) A.M.G. edited by Ecaterina Andronescu, nanostructures in therapeutic medicine series: nanostructures for drug delivery, Copyright © 2017 Elsevier Inc. All rights reserved, ISBN: 978-0-323-46143-6 (2017)
34.
Zurück zum Zitat M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, R. Langer, Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 20, 101–124 (2021)PubMedCrossRef M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, R. Langer, Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 20, 101–124 (2021)PubMedCrossRef
35.
Zurück zum Zitat B. Luo, W. Wang, Y. Zhao, Y. Zhao, Hot-electron dynamics mediated medical diagnosis and therapy. Chem. Rev. 123, 10808–10833 (2023)PubMedCrossRef B. Luo, W. Wang, Y. Zhao, Y. Zhao, Hot-electron dynamics mediated medical diagnosis and therapy. Chem. Rev. 123, 10808–10833 (2023)PubMedCrossRef
36.
Zurück zum Zitat E. Guisasola, A. Baeza, L. Asín, J.M. de la Fuente, M. Vallet‐Regí, Heating at the nanoscale through drug‐delivery devices: fabrication and synergic effects in cancer treatment with nanoparticles. Small Methods 2 (2018) E. Guisasola, A. Baeza, L. Asín, J.M. de la Fuente, M. Vallet‐Regí, Heating at the nanoscale through drug‐delivery devices: fabrication and synergic effects in cancer treatment with nanoparticles. Small Methods 2 (2018)
37.
Zurück zum Zitat R. Chen, J. Shi, C. Liu, J. Li, S. Cao, In situ self-assembly of gold nanorods with thermal-responsive microgel for multi-synergistic remote drug delivery. Adv. Compos. Hybrid Mater. 5, 2223–2234 (2021)CrossRef R. Chen, J. Shi, C. Liu, J. Li, S. Cao, In situ self-assembly of gold nanorods with thermal-responsive microgel for multi-synergistic remote drug delivery. Adv. Compos. Hybrid Mater. 5, 2223–2234 (2021)CrossRef
38.
Zurück zum Zitat C. Wang, M. Vazquez-Gonzalez, M. Fadeev, Y.S. Sohn, R. Nechushtai, I. Willner, Thermoplasmonic-triggered release of loads from DNA-modified hydrogel microcapsules functionalized with Au nanoparticles or Au nanorods. Small 16, e2000880 (2020)PubMedCrossRef C. Wang, M. Vazquez-Gonzalez, M. Fadeev, Y.S. Sohn, R. Nechushtai, I. Willner, Thermoplasmonic-triggered release of loads from DNA-modified hydrogel microcapsules functionalized with Au nanoparticles or Au nanorods. Small 16, e2000880 (2020)PubMedCrossRef
39.
Zurück zum Zitat Y. Liu, F. Mo, J. Hu, Q. Jiang, X. Wang, Z. Zou, X.Z. Zhang, D.W. Pang, X. Liu, Precision photothermal therapy and photoacoustic imaging by in situ activatable thermoplasmonics. Chem. Sci. 12, 10097–10105 (2021)PubMedPubMedCentralCrossRef Y. Liu, F. Mo, J. Hu, Q. Jiang, X. Wang, Z. Zou, X.Z. Zhang, D.W. Pang, X. Liu, Precision photothermal therapy and photoacoustic imaging by in situ activatable thermoplasmonics. Chem. Sci. 12, 10097–10105 (2021)PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat R. Huschka, J. Zuloaga, M.W. Knight, L.V. Brown, P. Nordlander, N.J. Halas, Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J. Am. Chem. Soc. 133, 12247–12255 (2011)PubMedPubMedCentralCrossRef R. Huschka, J. Zuloaga, M.W. Knight, L.V. Brown, P. Nordlander, N.J. Halas, Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J. Am. Chem. Soc. 133, 12247–12255 (2011)PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat R.S. Riley, M.N. Dang, M.M. Billingsley, B. Abraham, L. Gundlach, E.S. Day, Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation. Nano Lett. 18, 3565–3570 (2018)PubMedPubMedCentralCrossRef R.S. Riley, M.N. Dang, M.M. Billingsley, B. Abraham, L. Gundlach, E.S. Day, Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation. Nano Lett. 18, 3565–3570 (2018)PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat V.T. Ruhoff, M.R. Arastoo, G. Moreno-Pescador, P.M. Bendix, Biological applications of thermoplasmonics. Nano Lett. (2024) V.T. Ruhoff, M.R. Arastoo, G. Moreno-Pescador, P.M. Bendix, Biological applications of thermoplasmonics. Nano Lett. (2024)
43.
Zurück zum Zitat W. Ni, J. Wu, H. Fang, Y. Feng, Y. Hu, L. Lin, J. Chen, F. Chen, H. Tian, Photothermal-chemotherapy enhancing tumor immunotherapy by multifunctional metal-organic framework based drug delivery system. Nano Lett. 21, 7796–7805 (2021)PubMedCrossRef W. Ni, J. Wu, H. Fang, Y. Feng, Y. Hu, L. Lin, J. Chen, F. Chen, H. Tian, Photothermal-chemotherapy enhancing tumor immunotherapy by multifunctional metal-organic framework based drug delivery system. Nano Lett. 21, 7796–7805 (2021)PubMedCrossRef
44.
Zurück zum Zitat C. Zhan, Y. Huang, G. Lin, S. Huang, F. Zeng, S. Wu, A Gold Nanocage/cluster hybrid structure for whole-body multispectral optoacoustic tomography imaging EGFR inhibitor delivery, and photothermal therapy. Small 15, e1900309 (2019)PubMedCrossRef C. Zhan, Y. Huang, G. Lin, S. Huang, F. Zeng, S. Wu, A Gold Nanocage/cluster hybrid structure for whole-body multispectral optoacoustic tomography imaging EGFR inhibitor delivery, and photothermal therapy. Small 15, e1900309 (2019)PubMedCrossRef
45.
Zurück zum Zitat X. Han, J. Huang, H. Lin, Z. Wang, P. Li, Y. Chen, 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthcare Mater. 7, e1701394 (2018)CrossRef X. Han, J. Huang, H. Lin, Z. Wang, P. Li, Y. Chen, 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthcare Mater. 7, e1701394 (2018)CrossRef
46.
Zurück zum Zitat E. Aznar, M. Oroval, L. Pascual, J.R. Murguia, R. Martinez-Manez, F. Sancenon, Gated materials for on-command release of guest molecules. Chem. Rev. 116, 561–718 (2016)PubMedCrossRef E. Aznar, M. Oroval, L. Pascual, J.R. Murguia, R. Martinez-Manez, F. Sancenon, Gated materials for on-command release of guest molecules. Chem. Rev. 116, 561–718 (2016)PubMedCrossRef
47.
Zurück zum Zitat A. Hernandez Montoto, R. Montes, A. Samadi, M. Gorbe, J.M. Terres, R. Cao-Milan, E. Aznar, J. Ibanez, R. Masot, M.D. Marcos, M. Orzaez, F. Sancenon, L.B. Oddershede, R. Martinez-Manez, Gold nanostars coated with mesoporous silica are effective and nontoxic photothermal agents capable of gate keeping and laser-induced drug release. ACS Appl. Mater. Interf. 10, 27644–27656 (2018) A. Hernandez Montoto, R. Montes, A. Samadi, M. Gorbe, J.M. Terres, R. Cao-Milan, E. Aznar, J. Ibanez, R. Masot, M.D. Marcos, M. Orzaez, F. Sancenon, L.B. Oddershede, R. Martinez-Manez, Gold nanostars coated with mesoporous silica are effective and nontoxic photothermal agents capable of gate keeping and laser-induced drug release. ACS Appl. Mater. Interf. 10, 27644–27656 (2018)
48.
Zurück zum Zitat Z. Li, K. Xu, L. Qin, D. Zhao, N. Yang, D. Wang, Y. Yang, Hollow nanomaterials in advanced drug delivery systems: from single- to multiple shells. Adv. Mater. 35, e2203890 (2023)PubMedCrossRef Z. Li, K. Xu, L. Qin, D. Zhao, N. Yang, D. Wang, Y. Yang, Hollow nanomaterials in advanced drug delivery systems: from single- to multiple shells. Adv. Mater. 35, e2203890 (2023)PubMedCrossRef
49.
Zurück zum Zitat D. Zhao, Y. Wei, J. Xiong, C. Gao, D. Wang, Response and regulation of the microenvironment based on hollow structured drug delivery systems. Adv. Funct. Mater. 33 (2023) D. Zhao, Y. Wei, J. Xiong, C. Gao, D. Wang, Response and regulation of the microenvironment based on hollow structured drug delivery systems. Adv. Funct. Mater. 33 (2023)
50.
Zurück zum Zitat M. Sun, Z. Ji, L. He, C. Zhao, L. Ma, X. Xu, E.J. Cornel, Z. Fan, X. Xu, Instant intracellular delivery of miRNA via photothermal effect induced on plasmonic pyramid arrays. Adv. Funct. Mater. 32 (2021) M. Sun, Z. Ji, L. He, C. Zhao, L. Ma, X. Xu, E.J. Cornel, Z. Fan, X. Xu, Instant intracellular delivery of miRNA via photothermal effect induced on plasmonic pyramid arrays. Adv. Funct. Mater. 32 (2021)
51.
Zurück zum Zitat E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)PubMedPubMedCentralCrossRef E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat R. Xiong, D. Hua, J. Van Hoeck, D. Berdecka, L. Leger, S. De Munter, J.C. Fraire, L. Raes, A. Harizaj, F. Sauvage, G. Goetgeluk, M. Pille, J. Aalders, J. Belza, T. Van Acker, E. Bolea-Fernandez, T. Si, F. Vanhaecke, W.H. De Vos, B. Vandekerckhove, J. van Hengel, K. Raemdonck, C. Huang, S.C. De Smedt, K. Braeckmans, Photothermal nanofibres enable safe engineering of therapeutic cells. Nat. Nanotechnol. 16, 1281–1291 (2021)PubMedPubMedCentralCrossRef R. Xiong, D. Hua, J. Van Hoeck, D. Berdecka, L. Leger, S. De Munter, J.C. Fraire, L. Raes, A. Harizaj, F. Sauvage, G. Goetgeluk, M. Pille, J. Aalders, J. Belza, T. Van Acker, E. Bolea-Fernandez, T. Si, F. Vanhaecke, W.H. De Vos, B. Vandekerckhove, J. van Hengel, K. Raemdonck, C. Huang, S.C. De Smedt, K. Braeckmans, Photothermal nanofibres enable safe engineering of therapeutic cells. Nat. Nanotechnol. 16, 1281–1291 (2021)PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Y.C. Wu, T.H. Wu, D.L. Clemens, B.Y. Lee, X.M. Wen, M.A. Horwitz, M.A. Teitell, P.Y. Chiou, Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat. Methods 12, 439 (2015) Y.C. Wu, T.H. Wu, D.L. Clemens, B.Y. Lee, X.M. Wen, M.A. Horwitz, M.A. Teitell, P.Y. Chiou, Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat. Methods 12, 439 (2015)
54.
Zurück zum Zitat U. Bunyatova, M. Dogan, E. Tekin, O. Ferhanoglu, Ultra-stable nano-micro bubbles in a biocompatible medium for safe delivery of anti-cancer drugs. Sci. Rep. 14, 5321 (2024)PubMedPubMedCentralCrossRef U. Bunyatova, M. Dogan, E. Tekin, O. Ferhanoglu, Ultra-stable nano-micro bubbles in a biocompatible medium for safe delivery of anti-cancer drugs. Sci. Rep. 14, 5321 (2024)PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat J. Gao, J.M. Karp, R. Langer, N. Joshi, The future of drug delivery. Chem. Mater. Publ. Am. Chem. Soc. 35, 359–363 (2023) J. Gao, J.M. Karp, R. Langer, N. Joshi, The future of drug delivery. Chem. Mater. Publ. Am. Chem. Soc. 35, 359–363 (2023)
56.
Zurück zum Zitat S.M. Mirvakili, R. Langer, Wireless on-demand drug delivery. Nat. Electron. 4, 464–477 (2021)CrossRef S.M. Mirvakili, R. Langer, Wireless on-demand drug delivery. Nat. Electron. 4, 464–477 (2021)CrossRef
57.
Zurück zum Zitat C. Alvarez-Lorenzo, A. Concheiro, Smart drug delivery systems: from fundamentals to the clinic. Chem. Commun. 50, 7743–7765 (2014)CrossRef C. Alvarez-Lorenzo, A. Concheiro, Smart drug delivery systems: from fundamentals to the clinic. Chem. Commun. 50, 7743–7765 (2014)CrossRef
58.
Zurück zum Zitat Y. Zhang, F. Liu, Y. Zhang, J. Wang, D. D’Andrea, J.B. Walters, S. Li, H.J. Yoon, M. Wu, S. Li, Z. Hu, T. Wang, J. Choi, K. Bailey, E. Dempsey, K. Zhao, A. Lantsova, Y. Bouricha, I. Huang, H. Guo, X. Ni, Y. Wu, G. Lee, F. Jiang, Y. Huang, C.K. Franz, J.A. Rogers, Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc. Natl. Acad. Sci. U.S.A. 120, e2217734120 (2023)PubMedPubMedCentralCrossRef Y. Zhang, F. Liu, Y. Zhang, J. Wang, D. D’Andrea, J.B. Walters, S. Li, H.J. Yoon, M. Wu, S. Li, Z. Hu, T. Wang, J. Choi, K. Bailey, E. Dempsey, K. Zhao, A. Lantsova, Y. Bouricha, I. Huang, H. Guo, X. Ni, Y. Wu, G. Lee, F. Jiang, Y. Huang, C.K. Franz, J.A. Rogers, Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc. Natl. Acad. Sci. U.S.A. 120, e2217734120 (2023)PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat H.M.L. Robert, J. Savatier, S. Vial, J. Verghese, B. Wattellier, H. Rigneault, S. Monneret, J. Polleux, G. Baffou, Photothermal control of heat-shock protein expression at the single cell level. Small 14, e1801910 (2018)PubMedCrossRef H.M.L. Robert, J. Savatier, S. Vial, J. Verghese, B. Wattellier, H. Rigneault, S. Monneret, J. Polleux, G. Baffou, Photothermal control of heat-shock protein expression at the single cell level. Small 14, e1801910 (2018)PubMedCrossRef
60.
Zurück zum Zitat G. Baffou, J. Polleux, H. Rigneault, S. Monneret, Super-heating and micro-bubble generation around plasmonic nanoparticles under cw Illumination. J. Phys. Chem. C 118, 4890–4898 (2014)CrossRef G. Baffou, J. Polleux, H. Rigneault, S. Monneret, Super-heating and micro-bubble generation around plasmonic nanoparticles under cw Illumination. J. Phys. Chem. C 118, 4890–4898 (2014)CrossRef
61.
Zurück zum Zitat M. Li, T. Lohmuller, J. Feldmann, Optical injection of gold nanoparticles into living cells. Nano Lett. 15, 770–775 (2015)PubMedCrossRef M. Li, T. Lohmuller, J. Feldmann, Optical injection of gold nanoparticles into living cells. Nano Lett. 15, 770–775 (2015)PubMedCrossRef
62.
Zurück zum Zitat X. Zhao, Y. Shi, T. Pan, D. Lu, J. Xiong, B. Li, H. Xin, In Situ single-cell surgery and intracellular organelle manipulation via thermoplasmonics combined optical trapping. Nano Lett. 22, 402–410 (2022)PubMedCrossRef X. Zhao, Y. Shi, T. Pan, D. Lu, J. Xiong, B. Li, H. Xin, In Situ single-cell surgery and intracellular organelle manipulation via thermoplasmonics combined optical trapping. Nano Lett. 22, 402–410 (2022)PubMedCrossRef
63.
Zurück zum Zitat J. Wang, X. Qu, C. Xu, Z. Zhang, G. Qi, Y. Jin, Thermoplasmonic regulation of the mitochondrial metabolic state for promoting directed differentiation of dental pulp stem cells. Anal. Chem. 94, 9564–9571 (2022)PubMedCrossRef J. Wang, X. Qu, C. Xu, Z. Zhang, G. Qi, Y. Jin, Thermoplasmonic regulation of the mitochondrial metabolic state for promoting directed differentiation of dental pulp stem cells. Anal. Chem. 94, 9564–9571 (2022)PubMedCrossRef
64.
Zurück zum Zitat A. Marino, S. Arai, Y. Hou, A. Degl’Innocenti, V. Cappello, B. Mazzolai, Y.T. Chang, V. Mattoli, M. Suzuki, G. Ciofani, Gold nanoshell-mediated remote myotube activation. ACS Nano 11, 2494–2508 (2017)PubMedCrossRef A. Marino, S. Arai, Y. Hou, A. Degl’Innocenti, V. Cappello, B. Mazzolai, Y.T. Chang, V. Mattoli, M. Suzuki, G. Ciofani, Gold nanoshell-mediated remote myotube activation. ACS Nano 11, 2494–2508 (2017)PubMedCrossRef
65.
Zurück zum Zitat A. Andolfi, P. Arnaldi, D.D. Lisa, S. Pepe, M. Frega, A. Fassio, A. Lagazzo, S. Martinoia, L. Pastorino, A micropatterned thermoplasmonic substrate for neuromodulation of in vitro neuronal networks. Acta Biomater. 158, 281–291 (2023)PubMedCrossRef A. Andolfi, P. Arnaldi, D.D. Lisa, S. Pepe, M. Frega, A. Fassio, A. Lagazzo, S. Martinoia, L. Pastorino, A micropatterned thermoplasmonic substrate for neuromodulation of in vitro neuronal networks. Acta Biomater. 158, 281–291 (2023)PubMedCrossRef
66.
Zurück zum Zitat W. Lu, G. Zhang, R. Zhang, L.G. Flores, Q. Huang, J.G. Gelovani, C. Li, Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Can. Res. 70, 3177–3188 (2010)CrossRef W. Lu, G. Zhang, R. Zhang, L.G. Flores, Q. Huang, J.G. Gelovani, C. Li, Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Can. Res. 70, 3177–3188 (2010)CrossRef
67.
68.
Zurück zum Zitat A. Sutton, T. Shirman, J.V. Timonen, G.T. England, P. Kim, M. Kolle, T. Ferrante, L.D. Zarzar, E. Strong, J. Aizenberg, Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation. Nat. Commun. 8, 14700 (2017)PubMedPubMedCentralCrossRef A. Sutton, T. Shirman, J.V. Timonen, G.T. England, P. Kim, M. Kolle, T. Ferrante, L.D. Zarzar, E. Strong, J. Aizenberg, Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation. Nat. Commun. 8, 14700 (2017)PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat G. Moreno-Pescador, M.R. Arastoo, V.T. Ruhoff, S. Chiantia, R. Daniels, P.M. Bendix, Thermoplasmonic vesicle fusion reveals membrane phase segregation of influenza spike proteins. Nano Lett. 23, 3377–3384 (2023)PubMedPubMedCentralCrossRef G. Moreno-Pescador, M.R. Arastoo, V.T. Ruhoff, S. Chiantia, R. Daniels, P.M. Bendix, Thermoplasmonic vesicle fusion reveals membrane phase segregation of influenza spike proteins. Nano Lett. 23, 3377–3384 (2023)PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat A. Rorvig-Lund, A. Bahadori, S. Semsey, P.M. Bendix, L.B. Oddershede, Vesicle fusion triggered by optically heated gold nanoparticles. Nano Lett. 15, 4183–4188 (2015)PubMedCrossRef A. Rorvig-Lund, A. Bahadori, S. Semsey, P.M. Bendix, L.B. Oddershede, Vesicle fusion triggered by optically heated gold nanoparticles. Nano Lett. 15, 4183–4188 (2015)PubMedCrossRef
71.
Zurück zum Zitat D. Yeheskely-Hayon, L. Minai, L. Golan, E.J. Dann, D. Yelin, Optically induced cell fusion using bispecific nanoparticles. Small 9, 3771–3777 (2013)PubMedCrossRef D. Yeheskely-Hayon, L. Minai, L. Golan, E.J. Dann, D. Yelin, Optically induced cell fusion using bispecific nanoparticles. Small 9, 3771–3777 (2013)PubMedCrossRef
72.
Zurück zum Zitat A. Bahadori, L.B. Oddershede, P.M. Bendix, Hot-nanoparticle-mediated fusion of selected cells. Nano Res. 10, 2034–2045 (2017)CrossRef A. Bahadori, L.B. Oddershede, P.M. Bendix, Hot-nanoparticle-mediated fusion of selected cells. Nano Res. 10, 2034–2045 (2017)CrossRef
73.
Zurück zum Zitat G. Bolognesi, M.S. Friddin, A. Salehi-Reyhani, N.E. Barlow, N.J. Brooks, O. Ces, Y. Elani, Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat. Commun. 9, 1882 (2018)PubMedPubMedCentralCrossRef G. Bolognesi, M.S. Friddin, A. Salehi-Reyhani, N.E. Barlow, N.J. Brooks, O. Ces, Y. Elani, Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat. Commun. 9, 1882 (2018)PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Y. Wang, Y. Fei, T. Yang, Z. Luo, Y. Xu, B. Su, X. Lin, Nanotechnology for ultrafast nucleic acid amplification. Nano Today 48, 101749 (2023)CrossRef Y. Wang, Y. Fei, T. Yang, Z. Luo, Y. Xu, B. Su, X. Lin, Nanotechnology for ultrafast nucleic acid amplification. Nano Today 48, 101749 (2023)CrossRef
75.
Zurück zum Zitat H.L. Zhu, H.Q. Zhang, Y. Xu, S. Lassákova, M. Korabecná, P. Neuzil, PCR past, present and future. Biotechniques 69, 317–325 (2020)PubMedCrossRef H.L. Zhu, H.Q. Zhang, Y. Xu, S. Lassákova, M. Korabecná, P. Neuzil, PCR past, present and future. Biotechniques 69, 317–325 (2020)PubMedCrossRef
76.
Zurück zum Zitat F. Postollec, H. Falentin, S. Pavan, J. Combrisson, D. Sohier, Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 28, 848–861 (2011)PubMedCrossRef F. Postollec, H. Falentin, S. Pavan, J. Combrisson, D. Sohier, Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 28, 848–861 (2011)PubMedCrossRef
77.
Zurück zum Zitat J. Cheong, H. Yu, C.Y. Lee, J.U. Lee, H.J. Choi, J.H. Lee, H. Lee, J. Cheon, Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 4, 1159–1167 (2020)PubMedPubMedCentralCrossRef J. Cheong, H. Yu, C.Y. Lee, J.U. Lee, H.J. Choi, J.H. Lee, H. Lee, J. Cheon, Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 4, 1159–1167 (2020)PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat B.H. Kang, K.W. Jang, E.S. Yu, H. Na, Y.J. Lee, W.Y. Ko, N. Bae, D. Rho, K.H. Jeong, Ultrafast plasmonic nucleic acid amplification and real-time quantification for decentralized molecular diagnostics. ACS Nano 17, 6507–6518 (2023)PubMedPubMedCentralCrossRef B.H. Kang, K.W. Jang, E.S. Yu, H. Na, Y.J. Lee, W.Y. Ko, N. Bae, D. Rho, K.H. Jeong, Ultrafast plasmonic nucleic acid amplification and real-time quantification for decentralized molecular diagnostics. ACS Nano 17, 6507–6518 (2023)PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat S.H. Lee, S.M. Park, B.N. Kim, O.S. Kwon, W.Y. Rho, B.H. Jun, Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens. Bioelectron. 141, 111448 (2019)PubMedCrossRef S.H. Lee, S.M. Park, B.N. Kim, O.S. Kwon, W.Y. Rho, B.H. Jun, Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens. Bioelectron. 141, 111448 (2019)PubMedCrossRef
80.
Zurück zum Zitat B.K. Kim, S.A. Lee, M. Park, E.J. Jeon, M.J. Kim, J.M. Kim, H. Kim, S. Jung, S.K. Kim, Ultrafast real-time PCR in photothermal microparticles. ACS Nano 16, 20533–20544 (2022)PubMedPubMedCentralCrossRef B.K. Kim, S.A. Lee, M. Park, E.J. Jeon, M.J. Kim, J.M. Kim, H. Kim, S. Jung, S.K. Kim, Ultrafast real-time PCR in photothermal microparticles. ACS Nano 16, 20533–20544 (2022)PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat J.H. Son, B. Cho, S. Hong, S.H. Lee, O. Hoxha, A.J. Haack, L.P. Lee, Ultrafast photonic PCR. Light Sci. Appl. 4, e280–e280 (2015) J.H. Son, B. Cho, S. Hong, S.H. Lee, O. Hoxha, A.J. Haack, L.P. Lee, Ultrafast photonic PCR. Light Sci. Appl. 4, e280–e280 (2015)
82.
Zurück zum Zitat J. Kim, H. Kim, J.H. Park, S. Jon, Gold nanorod-based photo-PCR system for one-step, rapid detection of bacteria. Nanotheranostics 1, 178–185 (2017)PubMedPubMedCentralCrossRef J. Kim, H. Kim, J.H. Park, S. Jon, Gold nanorod-based photo-PCR system for one-step, rapid detection of bacteria. Nanotheranostics 1, 178–185 (2017)PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat J.H. Lee, Z. Cheglakov, J. Yi, T.M. Cronin, K.J. Gibson, B. Tian, Y. Weizmann, Plasmonic photothermal gold bipyramid nanoreactors for ultrafast real-time bioassays. J. Am. Chem. Soc. 139, 8054–8057 (2017)PubMedCrossRef J.H. Lee, Z. Cheglakov, J. Yi, T.M. Cronin, K.J. Gibson, B. Tian, Y. Weizmann, Plasmonic photothermal gold bipyramid nanoreactors for ultrafast real-time bioassays. J. Am. Chem. Soc. 139, 8054–8057 (2017)PubMedCrossRef
84.
Zurück zum Zitat P.J.R. Roche, M. Najih, S.S. Lee, L.K. Beitel, M.L. Carnevale, M. Paliouras, A.G. Kirk, M.A. Trifiro, Real time plasmonic qPCR: how fast is ultra-fast? 30 cycles in 54 seconds. Analyst 142, 1746–1755 (2017)PubMedCrossRef P.J.R. Roche, M. Najih, S.S. Lee, L.K. Beitel, M.L. Carnevale, M. Paliouras, A.G. Kirk, M.A. Trifiro, Real time plasmonic qPCR: how fast is ultra-fast? 30 cycles in 54 seconds. Analyst 142, 1746–1755 (2017)PubMedCrossRef
85.
Zurück zum Zitat S. Talebian, G.G. Wallace, A. Schroeder, F. Stellacci, J. Conde, Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol. 15, 618–621 (2020)PubMedCrossRef S. Talebian, G.G. Wallace, A. Schroeder, F. Stellacci, J. Conde, Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol. 15, 618–621 (2020)PubMedCrossRef
86.
Zurück zum Zitat C. Weiss, M. Carriere, L. Fusco, I. Capua, J.A. Regla-Nava, M. Pasquali, J.A. Scott, F. Vitale, M.A. Unal, C. Mattevi, D. Bedognetti, A. Merkoci, E. Tasciotti, A. Yilmazer, Y. Gogotsi, F. Stellacci, L.G. Delogu, Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 14, 6383–6406 (2020)PubMedCrossRef C. Weiss, M. Carriere, L. Fusco, I. Capua, J.A. Regla-Nava, M. Pasquali, J.A. Scott, F. Vitale, M.A. Unal, C. Mattevi, D. Bedognetti, A. Merkoci, E. Tasciotti, A. Yilmazer, Y. Gogotsi, F. Stellacci, L.G. Delogu, Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 14, 6383–6406 (2020)PubMedCrossRef
87.
Zurück zum Zitat Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang, W. Tao, Insights from nanotechnology in COVID-19 treatment. Nano Today 36, 101019 (2021)PubMedCrossRef Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang, W. Tao, Insights from nanotechnology in COVID-19 treatment. Nano Today 36, 101019 (2021)PubMedCrossRef
88.
Zurück zum Zitat A. Yakoubi, C.E.B. Dhafer, Advanced plasmonic nanoparticle-based techniques for the prevention, detection, and treatment of current COVID-19. Plasmonics 18, 311–347 (2023)PubMedCrossRef A. Yakoubi, C.E.B. Dhafer, Advanced plasmonic nanoparticle-based techniques for the prevention, detection, and treatment of current COVID-19. Plasmonics 18, 311–347 (2023)PubMedCrossRef
89.
Zurück zum Zitat H. Zhong, Z. Zhu, P. You, J. Lin, C.F. Cheung, V.L. Lu, F. Yan, C.Y. Chan, G. Li, Plasmonic and superhydrophobic self-decontaminating N95 respirators. ACS Nano 14, 8846–8854 (2020)PubMedCrossRef H. Zhong, Z. Zhu, P. You, J. Lin, C.F. Cheung, V.L. Lu, F. Yan, C.Y. Chan, G. Li, Plasmonic and superhydrophobic self-decontaminating N95 respirators. ACS Nano 14, 8846–8854 (2020)PubMedCrossRef
90.
Zurück zum Zitat H. Zhong, Z. Zhu, J. Lin, C.F. Cheung, V.L. Lu, F. Yan, C.Y. Chan, G. Li, Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 14, 6213–6221 (2020)PubMedCrossRef H. Zhong, Z. Zhu, J. Lin, C.F. Cheung, V.L. Lu, F. Yan, C.Y. Chan, G. Li, Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 14, 6213–6221 (2020)PubMedCrossRef
91.
Zurück zum Zitat S. Kumar, M. Karmacharya, S.R. Joshi, O. Gulenko, J. Park, G.H. Kim, Y.K. Cho, Photoactive antiviral face mask with self-sterilization and reusability. Nano Lett. 21, 337–343 (2021)PubMedCrossRef S. Kumar, M. Karmacharya, S.R. Joshi, O. Gulenko, J. Park, G.H. Kim, Y.K. Cho, Photoactive antiviral face mask with self-sterilization and reusability. Nano Lett. 21, 337–343 (2021)PubMedCrossRef
92.
Zurück zum Zitat A.K. Bhardwaj, A. Shukla, S. Maurya, S.C. Singh, K.N. Uttam, S. Sundaram, M.P. Singh, R. Gopal, Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their bactericidal efficacy: photon energy as key for size and distribution control. J. Photochem. Photobiol. B. Biol. 188, 42–49 (2018)CrossRef A.K. Bhardwaj, A. Shukla, S. Maurya, S.C. Singh, K.N. Uttam, S. Sundaram, M.P. Singh, R. Gopal, Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their bactericidal efficacy: photon energy as key for size and distribution control. J. Photochem. Photobiol. B. Biol. 188, 42–49 (2018)CrossRef
93.
Zurück zum Zitat X. Cai, M. Chen, A. Prominski, Y. Lin, N. Ankenbruck, J. Rosenberg, M. Nguyen, J. Shi, A. Tomatsidou, G. Randall, D. Missiakas, J. Fung, E.B. Chang, P. Penaloza-MacMaster, B. Tian, J. Huang, A multifunctional neutralizing antibody-conjugated nanoparticle inhibits and inactivates SARS-CoV-2. Adv Sci (Weinh) 9, e2103240 (2022)PubMedCrossRef X. Cai, M. Chen, A. Prominski, Y. Lin, N. Ankenbruck, J. Rosenberg, M. Nguyen, J. Shi, A. Tomatsidou, G. Randall, D. Missiakas, J. Fung, E.B. Chang, P. Penaloza-MacMaster, B. Tian, J. Huang, A multifunctional neutralizing antibody-conjugated nanoparticle inhibits and inactivates SARS-CoV-2. Adv Sci (Weinh) 9, e2103240 (2022)PubMedCrossRef
94.
Zurück zum Zitat W. Gong, B. Li, F. She, L. Guo, H. Li, N. Lu, Diffusion-driven height readout analytical device based on gold nanobipyramid-doped supramolecular hydrogel for point-of-care bioanalysis. Sens. Actuators, B Chem. 418, 136330 (2024)CrossRef W. Gong, B. Li, F. She, L. Guo, H. Li, N. Lu, Diffusion-driven height readout analytical device based on gold nanobipyramid-doped supramolecular hydrogel for point-of-care bioanalysis. Sens. Actuators, B Chem. 418, 136330 (2024)CrossRef
95.
Zurück zum Zitat A. Campu, I. Muresan, M. Potara, D.R. Lazar, F.L. Lazar, S. Cainap, D.M. Olinic, D. Maniu, S. Astilean, M. Focsan, Portable microfluidic plasmonic chip for fast real-time cardiac troponin I biomarker thermoplasmonic detection. J. Mater. Chem. B. (2023) A. Campu, I. Muresan, M. Potara, D.R. Lazar, F.L. Lazar, S. Cainap, D.M. Olinic, D. Maniu, S. Astilean, M. Focsan, Portable microfluidic plasmonic chip for fast real-time cardiac troponin I biomarker thermoplasmonic detection. J. Mater. Chem. B. (2023)
96.
Zurück zum Zitat J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)PubMedCrossRef J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)PubMedCrossRef
97.
Zurück zum Zitat K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011)PubMedCrossRef K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011)PubMedCrossRef
99.
Zurück zum Zitat C. Zhan, X.J. Chen, J. Yi, J.F. Li, D.Y. Wu, Z.Q. Tian, From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018)CrossRef C. Zhan, X.J. Chen, J. Yi, J.F. Li, D.Y. Wu, Z.Q. Tian, From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018)CrossRef
100.
Zurück zum Zitat N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011)PubMedCrossRef N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011)PubMedCrossRef
101.
Zurück zum Zitat M. Mesch, B. Metzger, M. Hentschel, H. Giessen, Nonlinear plasmonic sensing. Nano Lett. 16, 3155–3159 (2016)PubMedCrossRef M. Mesch, B. Metzger, M. Hentschel, H. Giessen, Nonlinear plasmonic sensing. Nano Lett. 16, 3155–3159 (2016)PubMedCrossRef
102.
Zurück zum Zitat M. Riskin, R. Tel-Vered, O. Lioubashevski, I. Willner, Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. J. Am. Chem. Soc. 131, 7368–7378 (2009)PubMedCrossRef M. Riskin, R. Tel-Vered, O. Lioubashevski, I. Willner, Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. J. Am. Chem. Soc. 131, 7368–7378 (2009)PubMedCrossRef
103.
Zurück zum Zitat L. Song, J. Chen, B.B. Xu, Y. Huang, Flexible plasmonic biosensors for healthcare monitoring: progress and prospects. ACS Nano 15, 18822–18847 (2021)PubMedCrossRef L. Song, J. Chen, B.B. Xu, Y. Huang, Flexible plasmonic biosensors for healthcare monitoring: progress and prospects. ACS Nano 15, 18822–18847 (2021)PubMedCrossRef
104.
Zurück zum Zitat G.C. Phan-Quang, H.K. Lee, H.W. Teng, C.S.L. Koh, B.Q. Yim, E.K.M. Tan, W.L. Tok, I.Y. Phang, X.Y. Ling, Plasmonic hotspots in air: an omnidirectional three-dimensional platform for stand-off in-air SERS sensing of airborne species. Angew. Chem. 57, 5792–5796 (2018)CrossRef G.C. Phan-Quang, H.K. Lee, H.W. Teng, C.S.L. Koh, B.Q. Yim, E.K.M. Tan, W.L. Tok, I.Y. Phang, X.Y. Ling, Plasmonic hotspots in air: an omnidirectional three-dimensional platform for stand-off in-air SERS sensing of airborne species. Angew. Chem. 57, 5792–5796 (2018)CrossRef
105.
Zurück zum Zitat Y.J. Zhang, P.M. Radjenovic, X.S. Zhou, H. Zhang, J.L. Yao, J.F. Li, Plasmonic core-shell nanomaterials and their applications in spectroscopies. Adv. Mater. 33, e2005900 (2021)PubMedCrossRef Y.J. Zhang, P.M. Radjenovic, X.S. Zhou, H. Zhang, J.L. Yao, J.F. Li, Plasmonic core-shell nanomaterials and their applications in spectroscopies. Adv. Mater. 33, e2005900 (2021)PubMedCrossRef
106.
Zurück zum Zitat G. Qiu, Z. Gai, L. Saleh, J. Tang, T. Gui, G.A. Kullak-Ublick, J. Wang, Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2. ACS Nano 15, 7536–7546 (2021)PubMedCrossRef G. Qiu, Z. Gai, L. Saleh, J. Tang, T. Gui, G.A. Kullak-Ublick, J. Wang, Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2. ACS Nano 15, 7536–7546 (2021)PubMedCrossRef
107.
Zurück zum Zitat Q. Zhao, J. Piao, W. Peng, J. Wang, W. Gao, X. Wu, H. Wang, X. Gong, J. Chang, B. Zhang, A metal chelator as a plasmonic signal-generation superregulator for ultrasensitive colorimetric bioassays of disease biomarkers. Adv. Sci. 5, 1800295 (2018)CrossRef Q. Zhao, J. Piao, W. Peng, J. Wang, W. Gao, X. Wu, H. Wang, X. Gong, J. Chang, B. Zhang, A metal chelator as a plasmonic signal-generation superregulator for ultrasensitive colorimetric bioassays of disease biomarkers. Adv. Sci. 5, 1800295 (2018)CrossRef
108.
Zurück zum Zitat S. Yan, S. Shan, J. Wen, J. Li, N. Kang, Z. Wu, J. Lombardi, H.W. Cheng, J. Wang, J. Luo, N. He, D. Mott, L. Wang, Q. Ge, B.S. Hsiao, M. Poliks, C.J. Zhong, Surface-mediated interconnections of nanoparticles in cellulosic fibrous materials toward 3D sensors. Adv. Mater. 32, e2002171 (2020)PubMedCrossRef S. Yan, S. Shan, J. Wen, J. Li, N. Kang, Z. Wu, J. Lombardi, H.W. Cheng, J. Wang, J. Luo, N. He, D. Mott, L. Wang, Q. Ge, B.S. Hsiao, M. Poliks, C.J. Zhong, Surface-mediated interconnections of nanoparticles in cellulosic fibrous materials toward 3D sensors. Adv. Mater. 32, e2002171 (2020)PubMedCrossRef
109.
Zurück zum Zitat W.T. Koo, Y. Kim, S. Savagatrup, B. Yoon, I. Jeon, S.J. Choi, I.D. Kim, T.M. Swager, Porous ion exchange polymer matrix for ultrasmall Au nanoparticle-decorated carbon nanotube chemiresistors. Chem. Mater. 31, 5413–5420 (2019)CrossRef W.T. Koo, Y. Kim, S. Savagatrup, B. Yoon, I. Jeon, S.J. Choi, I.D. Kim, T.M. Swager, Porous ion exchange polymer matrix for ultrasmall Au nanoparticle-decorated carbon nanotube chemiresistors. Chem. Mater. 31, 5413–5420 (2019)CrossRef
110.
Zurück zum Zitat C. Tang, K.H. Ku, S.X. Lennon Luo, A. Concellon, Y.M. Wu, R.Q. Lu, T.M. Swager, Chelating phosphine ligand stabilized AuNPs in methane detection. ACS Nano 14, 11605–11612 (2020) C. Tang, K.H. Ku, S.X. Lennon Luo, A. Concellon, Y.M. Wu, R.Q. Lu, T.M. Swager, Chelating phosphine ligand stabilized AuNPs in methane detection. ACS Nano 14, 11605–11612 (2020)
111.
Zurück zum Zitat G. Palermo, G. Strangi, Thermoplasmonic-biosensing demonstration based on the photothermal response of metallic nanoparticles. J. Appl. Phys. 128 (2020) G. Palermo, G. Strangi, Thermoplasmonic-biosensing demonstration based on the photothermal response of metallic nanoparticles. J. Appl. Phys. 128 (2020)
112.
Zurück zum Zitat M. Virk, K. Xiong, M. Svedendahl, M. Kall, A.B. Dahlin, A thermal plasmonic sensor platform: resistive heating of nanohole arrays. Nano Lett. 14, 3544–3549 (2014)PubMedCrossRef M. Virk, K. Xiong, M. Svedendahl, M. Kall, A.B. Dahlin, A thermal plasmonic sensor platform: resistive heating of nanohole arrays. Nano Lett. 14, 3544–3549 (2014)PubMedCrossRef
113.
Zurück zum Zitat Y. Liu, H. Ye, H. Huynh, C. Xie, P. Kang, J.S. Kahn, Z. Qin, Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics. Nat. Commun. 13, 1687 (2022)PubMedPubMedCentralCrossRef Y. Liu, H. Ye, H. Huynh, C. Xie, P. Kang, J.S. Kahn, Z. Qin, Digital plasmonic nanobubble detection for rapid and ultrasensitive virus diagnostics. Nat. Commun. 13, 1687 (2022)PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G.A. Kullak-Ublick, J. Wang, Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14, 5268–5277 (2020)PubMedCrossRef G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G.A. Kullak-Ublick, J. Wang, Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14, 5268–5277 (2020)PubMedCrossRef
115.
Zurück zum Zitat D. Zopf, A. Pittner, A. Dathe, N. Grosse, A. Csaki, K. Arstila, J.J. Toppari, W. Schott, D. Dontsov, G. Uhlrich, W. Fritzsche, O. Stranik, Plasmonic nanosensor array for multiplexed DNA-based pathogen detection. ACS Sens. 4, 335–343 (2019)PubMedCrossRef D. Zopf, A. Pittner, A. Dathe, N. Grosse, A. Csaki, K. Arstila, J.J. Toppari, W. Schott, D. Dontsov, G. Uhlrich, W. Fritzsche, O. Stranik, Plasmonic nanosensor array for multiplexed DNA-based pathogen detection. ACS Sens. 4, 335–343 (2019)PubMedCrossRef
116.
Zurück zum Zitat F. Haider, R. Ahmmed Aoni, R. Ahmed, G. Amouzad Mahdiraji, M. Fahmi Azman, F.R.M. Adikan, Mode-multiplex plasmonic sensor for multi-analyte detection. Opt. Lett. 45, 3945–3948 (2020) F. Haider, R. Ahmmed Aoni, R. Ahmed, G. Amouzad Mahdiraji, M. Fahmi Azman, F.R.M. Adikan, Mode-multiplex plasmonic sensor for multi-analyte detection. Opt. Lett. 45, 3945–3948 (2020)
118.
Zurück zum Zitat X. Bi, D.M. Czajkowsky, Z. Shao, J. Ye, Digital colloid-enhanced Raman spectroscopy by single-molecule counting. Nature (2024) X. Bi, D.M. Czajkowsky, Z. Shao, J. Ye, Digital colloid-enhanced Raman spectroscopy by single-molecule counting. Nature (2024)
119.
Zurück zum Zitat C. Lee, B. Lawrie, R. Pooser, K.G. Lee, C. Rockstuhl, M. Tame, Quantum plasmonic sensors. Chem. Rev. 121, 4743–4804 (2021)PubMedCrossRef C. Lee, B. Lawrie, R. Pooser, K.G. Lee, C. Rockstuhl, M. Tame, Quantum plasmonic sensors. Chem. Rev. 121, 4743–4804 (2021)PubMedCrossRef
120.
Zurück zum Zitat J. Qin, S. Jiang, Z. Wang, X. Cheng, B. Li, Y. Shi, D.P. Tsai, A.Q. Liu, W. Huang, W. Zhu, Metasurface micro/nano-optical sensors: principles and applications. ACS Nano 16, 11598–11618 (2022)PubMedCrossRef J. Qin, S. Jiang, Z. Wang, X. Cheng, B. Li, Y. Shi, D.P. Tsai, A.Q. Liu, W. Huang, W. Zhu, Metasurface micro/nano-optical sensors: principles and applications. ACS Nano 16, 11598–11618 (2022)PubMedCrossRef
121.
Zurück zum Zitat D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002)PubMedCrossRef D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002)PubMedCrossRef
122.
Zurück zum Zitat L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. U.S.A. 100, 11350–11355 (2003)PubMedPubMedCentralCrossRef L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. U.S.A. 100, 11350–11355 (2003)PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat S. Berciaud, L. Cognet, G.A. Blab, B. Lounis, Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93, 257402 (2004)PubMedCrossRef S. Berciaud, L. Cognet, G.A. Blab, B. Lounis, Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93, 257402 (2004)PubMedCrossRef
124.
Zurück zum Zitat S. Adhikari, P. Spaeth, A. Kar, M.D. Baaske, S. Khatua, M. Orrit, Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules. ACS Nano 14, 16414–16445 (2020)PubMedPubMedCentralCrossRef S. Adhikari, P. Spaeth, A. Kar, M.D. Baaske, S. Khatua, M. Orrit, Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules. ACS Nano 14, 16414–16445 (2020)PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat P. Vermeulen, L. Cognet, B. Lounis, Photothermal microscopy: optical detection of small absorbers in scattering environments. J. Microsc. 254, 115–121 (2014)PubMedCrossRef P. Vermeulen, L. Cognet, B. Lounis, Photothermal microscopy: optical detection of small absorbers in scattering environments. J. Microsc. 254, 115–121 (2014)PubMedCrossRef
126.
Zurück zum Zitat K.A. Willets, A.J. Wilson, V. Sundaresan, P.B. Joshi, Super-Resolution Imaging and Plasmonics. Chem. Rev. 117, 7538–7582 (2017)PubMedCrossRef K.A. Willets, A.J. Wilson, V. Sundaresan, P.B. Joshi, Super-Resolution Imaging and Plasmonics. Chem. Rev. 117, 7538–7582 (2017)PubMedCrossRef
127.
Zurück zum Zitat S.A. Hosseini Jebeli, C.A. West, S.A. Lee, H.J. Goldwyn, C.R. Bilchak, Z. Fakhraai, K.A. Willets, S. Link, D.J. Masiello, Wavelength-dependent photothermal imaging probes nanoscale temperature differences among subdiffraction coupled plasmonic nanorods. Nano Lett. 21, 5386–5393 (2021) S.A. Hosseini Jebeli, C.A. West, S.A. Lee, H.J. Goldwyn, C.R. Bilchak, Z. Fakhraai, K.A. Willets, S. Link, D.J. Masiello, Wavelength-dependent photothermal imaging probes nanoscale temperature differences among subdiffraction coupled plasmonic nanorods. Nano Lett. 21, 5386–5393 (2021)
128.
Zurück zum Zitat Y. Zhang, H. Zong, C. Zong, Y. Tan, M. Zhang, Y. Zhan, J.X. Cheng, Fluorescence-detected mid-infrared photothermal microscopy. J. Am. Chem. Soc. 143, 11490–11499 (2021)PubMedPubMedCentralCrossRef Y. Zhang, H. Zong, C. Zong, Y. Tan, M. Zhang, Y. Zhan, J.X. Cheng, Fluorescence-detected mid-infrared photothermal microscopy. J. Am. Chem. Soc. 143, 11490–11499 (2021)PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat L. Cognet, S. Berciaud, D. Lasne, B. Lounis, Photothermal methods for single nonluminescent nano-objects. Anal. Chem. 80, 2288–2294 (2008)PubMedCrossRef L. Cognet, S. Berciaud, D. Lasne, B. Lounis, Photothermal methods for single nonluminescent nano-objects. Anal. Chem. 80, 2288–2294 (2008)PubMedCrossRef
130.
Zurück zum Zitat R.W. Taylor, V. Sandoghdar, Interferometric scattering microscopy: seeing single nanoparticles and molecules via Rayleigh scattering. Nano Lett. 19, 4827–4835 (2019)PubMedPubMedCentralCrossRef R.W. Taylor, V. Sandoghdar, Interferometric scattering microscopy: seeing single nanoparticles and molecules via Rayleigh scattering. Nano Lett. 19, 4827–4835 (2019)PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat M. Selmke, A. Heber, M. Braun, F. Cichos, Photothermal single particle microscopy using a single laser beam. Appl. Phys. Lett. 105 (2014) M. Selmke, A. Heber, M. Braun, F. Cichos, Photothermal single particle microscopy using a single laser beam. Appl. Phys. Lett. 105 (2014)
132.
Zurück zum Zitat G. Baffou, C. Girard, R. Quidant, Mapping heat origin in plasmonic structures. Phys. Rev. Lett. 104, 136805 (2010)PubMedCrossRef G. Baffou, C. Girard, R. Quidant, Mapping heat origin in plasmonic structures. Phys. Rev. Lett. 104, 136805 (2010)PubMedCrossRef
133.
Zurück zum Zitat Z.X. Chen, X.N. Shan, Y. Guan, S.P. Wang, J.J. Zhu, N.J. Tao, Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy. ACS Nano 9, 11574–11581 (2015)PubMedCrossRef Z.X. Chen, X.N. Shan, Y. Guan, S.P. Wang, J.J. Zhu, N.J. Tao, Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy. ACS Nano 9, 11574–11581 (2015)PubMedCrossRef
134.
Zurück zum Zitat M. Yorulmaz, S. Nizzero, A. Hoggard, L.Y. Wang, Y.Y. Cai, M.N. Su, W.S. Chang, S. Link, Single-particle absorption spectroscopy by photothermal contrast. Nano Lett. 15, 3041–3047 (2015)PubMedCrossRef M. Yorulmaz, S. Nizzero, A. Hoggard, L.Y. Wang, Y.Y. Cai, M.N. Su, W.S. Chang, S. Link, Single-particle absorption spectroscopy by photothermal contrast. Nano Lett. 15, 3041–3047 (2015)PubMedCrossRef
135.
Zurück zum Zitat M. Kim, J.H. Lee, J.M. Nam, Plasmonic photothermal nanoparticles for biomedical applications. Adv Sci (Weinh) 6, 1900471 (2019)PubMedCrossRef M. Kim, J.H. Lee, J.M. Nam, Plasmonic photothermal nanoparticles for biomedical applications. Adv Sci (Weinh) 6, 1900471 (2019)PubMedCrossRef
136.
Zurück zum Zitat W. Li, X. Chen, Gold nanoparticles for photoacoustic imaging. Nanomedicine 10, 299–320 (2015)PubMedCrossRef W. Li, X. Chen, Gold nanoparticles for photoacoustic imaging. Nanomedicine 10, 299–320 (2015)PubMedCrossRef
137.
Zurück zum Zitat I.C. Sun, D.S. Dumani, S.Y. Emelianov, Applications of the photocatalytic and photoacoustic properties of gold nanorods in contrast-enhanced ultrasound and photoacoustic imaging. ACS Nano 18, 3575–3582 (2024)PubMedCrossRef I.C. Sun, D.S. Dumani, S.Y. Emelianov, Applications of the photocatalytic and photoacoustic properties of gold nanorods in contrast-enhanced ultrasound and photoacoustic imaging. ACS Nano 18, 3575–3582 (2024)PubMedCrossRef
138.
Zurück zum Zitat R. García-Álvarez, L. Chen, A. Nedilko, A. Sánchez-Iglesias, A. Rix, W. Lederle, V. Pathak, T. Lammers, G. von Plessen, K. Kostarelos, L.M. Liz-Marzán, A.J.C. Kuehne, D.N. Chigrin, Optimizing the geometry of photoacoustically active gold nanoparticles for biomedical imaging. ACS Photon. 7, 646–652 (2020)CrossRef R. García-Álvarez, L. Chen, A. Nedilko, A. Sánchez-Iglesias, A. Rix, W. Lederle, V. Pathak, T. Lammers, G. von Plessen, K. Kostarelos, L.M. Liz-Marzán, A.J.C. Kuehne, D.N. Chigrin, Optimizing the geometry of photoacoustically active gold nanoparticles for biomedical imaging. ACS Photon. 7, 646–652 (2020)CrossRef
139.
Zurück zum Zitat C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, X. Wang, Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells. Adv. Sci. 3 (2016) C. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, X. Wang, Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells. Adv. Sci. 3 (2016)
140.
Zurück zum Zitat T. Repenko, A. Rix, A. Nedilko, J. Rose, A. Hermann, R. Vinokur, S. Moli, R. Cao‐Milàn, M. Mayer, G. von Plessen, A. Fery, L. De Laporte, W. Lederle, D.N. Chigrin, A.J.C. Kuehne, Strong photoacoustic signal enhancement by coating gold nanoparticles with melanin for biomedical imaging. Adv. Funct. Mater. 28 (2017) T. Repenko, A. Rix, A. Nedilko, J. Rose, A. Hermann, R. Vinokur, S. Moli, R. Cao‐Milàn, M. Mayer, G. von Plessen, A. Fery, L. De Laporte, W. Lederle, D.N. Chigrin, A.J.C. Kuehne, Strong photoacoustic signal enhancement by coating gold nanoparticles with melanin for biomedical imaging. Adv. Funct. Mater. 28 (2017)
142.
Zurück zum Zitat C. Zhou, L. Zhang, T. Sun, Y. Zhang, Y. Liu, M. Gong, Z. Xu, M. Du, Y. Liu, G. Liu, D. Zhang, Activatable NIR‐II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy. Adv. Mater. 33 (2020) C. Zhou, L. Zhang, T. Sun, Y. Zhang, Y. Liu, M. Gong, Z. Xu, M. Du, Y. Liu, G. Liu, D. Zhang, Activatable NIR‐II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy. Adv. Mater. 33 (2020)
143.
Zurück zum Zitat Y. Liu, J. He, K. Yang, C. Yi, Y. Liu, L. Nie, N.M. Khashab, X. Chen, Z. Nie, Folding up of gold nanoparticle strings into plasmonic vesicles for enhanced photoacoustic imaging. Angew. Chem. 54, 15809–15812 (2015)CrossRef Y. Liu, J. He, K. Yang, C. Yi, Y. Liu, L. Nie, N.M. Khashab, X. Chen, Z. Nie, Folding up of gold nanoparticle strings into plasmonic vesicles for enhanced photoacoustic imaging. Angew. Chem. 54, 15809–15812 (2015)CrossRef
144.
Zurück zum Zitat S. Kumar, J. Aaron, K. Sokolov, Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 3, 314–320 (2008)PubMedCrossRef S. Kumar, J. Aaron, K. Sokolov, Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 3, 314–320 (2008)PubMedCrossRef
145.
Zurück zum Zitat B. Wang, E. Yantsen, T. Larson, A.B. Karpiouk, S. Sethuraman, J.L. Su, K. Sokolov, S.Y. Emelianov, Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett. 9, 2212–2217 (2009)PubMedCrossRef B. Wang, E. Yantsen, T. Larson, A.B. Karpiouk, S. Sethuraman, J.L. Su, K. Sokolov, S.Y. Emelianov, Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett. 9, 2212–2217 (2009)PubMedCrossRef
146.
Zurück zum Zitat K. Wilson, K. Homan, S. Emelianov, Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging, Nat. Commun. 3 (2012) K. Wilson, K. Homan, S. Emelianov, Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging, Nat. Commun. 3 (2012)
147.
Zurück zum Zitat A.J. Dixon, S. Hu, A.L. Klibanov, J.A. Hossack, Oscillatory dynamics and in vivo photoacoustic imaging performance of plasmonic nanoparticle-coated microbubbles. Small 11, 3066–3077 (2015)PubMedPubMedCentralCrossRef A.J. Dixon, S. Hu, A.L. Klibanov, J.A. Hossack, Oscillatory dynamics and in vivo photoacoustic imaging performance of plasmonic nanoparticle-coated microbubbles. Small 11, 3066–3077 (2015)PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat D. Lee, E.J. Park, S.E. Lee, S.H. Jeong, J.Y. Lee, E. Kang, Energy-absorbing and local plasmonic nanodiamond/gold nanocomposites for sustained and enhanced photoacoustic imaging. ACS Sustain. Chem. Eng. 5, 8284–8293 (2017)CrossRef D. Lee, E.J. Park, S.E. Lee, S.H. Jeong, J.Y. Lee, E. Kang, Energy-absorbing and local plasmonic nanodiamond/gold nanocomposites for sustained and enhanced photoacoustic imaging. ACS Sustain. Chem. Eng. 5, 8284–8293 (2017)CrossRef
149.
Zurück zum Zitat W.J. Lee, E.Y. Park, D. Choi, D. Lee, J. Koo, J.G. Min, Y. Jung, S.B. Hong, K. Kim, C. Kim, S. Kim, Colloidal porous AuAg alloyed nanoparticles for enhanced photoacoustic imaging. ACS Appl. Mater. Interfaces 12, 32270–32277 (2020)PubMedCrossRef W.J. Lee, E.Y. Park, D. Choi, D. Lee, J. Koo, J.G. Min, Y. Jung, S.B. Hong, K. Kim, C. Kim, S. Kim, Colloidal porous AuAg alloyed nanoparticles for enhanced photoacoustic imaging. ACS Appl. Mater. Interfaces 12, 32270–32277 (2020)PubMedCrossRef
150.
Zurück zum Zitat L. Li, S. Li, Z. Fan, G. Huang, J. Tang, L. Nie, Current strategies of photoacoustic imaging assisted cancer theragnostics toward clinical studies. ACS Photon. 9, 2555–2578 (2022)CrossRef L. Li, S. Li, Z. Fan, G. Huang, J. Tang, L. Nie, Current strategies of photoacoustic imaging assisted cancer theragnostics toward clinical studies. ACS Photon. 9, 2555–2578 (2022)CrossRef
151.
Zurück zum Zitat R.M. Abraham-Ekeroth, F. De Angelis, Radioplasmonics: plasmonic transducers in the radiofrequency regime for resonant thermo-acoustic imaging in deep tissues. ACS Photon. 8, 238–246 (2021)CrossRef R.M. Abraham-Ekeroth, F. De Angelis, Radioplasmonics: plasmonic transducers in the radiofrequency regime for resonant thermo-acoustic imaging in deep tissues. ACS Photon. 8, 238–246 (2021)CrossRef
152.
Zurück zum Zitat M.T. Kief, R.H. Victora, Materials for heat-assisted magnetic recording. MRS Bull. 43, 87–92 (2018)CrossRef M.T. Kief, R.H. Victora, Materials for heat-assisted magnetic recording. MRS Bull. 43, 87–92 (2018)CrossRef
153.
Zurück zum Zitat A. Nordrum, The fight for the future of the disk drive. IEEE Spectr. 56, 44–47 (2019)CrossRef A. Nordrum, The fight for the future of the disk drive. IEEE Spectr. 56, 44–47 (2019)CrossRef
154.
Zurück zum Zitat N. Zhou, X. Xu, A.T. Hammack, B.C. Stipe, K. Gao, W. Scholz, E.C. Gage, Plasmonic near-field transducer for heat-assisted magnetic recording. Nanophotonics 3, 141–155 (2014)CrossRef N. Zhou, X. Xu, A.T. Hammack, B.C. Stipe, K. Gao, W. Scholz, E.C. Gage, Plasmonic near-field transducer for heat-assisted magnetic recording. Nanophotonics 3, 141–155 (2014)CrossRef
155.
Zurück zum Zitat R. Katayama, J. Chen, S. Sugiura, Simulation on double-ring-resonator-type device considering gain for heat-assisted magnetic recording. Opt. Rev. 30, 361–375 (2023)CrossRef R. Katayama, J. Chen, S. Sugiura, Simulation on double-ring-resonator-type device considering gain for heat-assisted magnetic recording. Opt. Rev. 30, 361–375 (2023)CrossRef
156.
Zurück zum Zitat W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N.J. Gokemeijer, Y.T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009)CrossRef W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N.J. Gokemeijer, Y.T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009)CrossRef
157.
Zurück zum Zitat B.V. Budaev, D.B. Bogy, On the lifetime of plasmonic transducers in heat assisted magnetic recording. J. Appl. Phys. 112 (2012) B.V. Budaev, D.B. Bogy, On the lifetime of plasmonic transducers in heat assisted magnetic recording. J. Appl. Phys. 112 (2012)
158.
Zurück zum Zitat K. Nakagawa, A. Tajiri, K. Tamura, S. Toriumi, Y. Ashizawa, A. Tsukamoto, A. Itoh, Y. Sasaki, S. Saito, M. Takahashi, S. Ohnuki, Thermally assisted magnetic recording applying optical near field with ultra short-time heating. J. Magnet. Soc. Jpn 119–122 (2013) K. Nakagawa, A. Tajiri, K. Tamura, S. Toriumi, Y. Ashizawa, A. Tsukamoto, A. Itoh, Y. Sasaki, S. Saito, M. Takahashi, S. Ohnuki, Thermally assisted magnetic recording applying optical near field with ultra short-time heating. J. Magnet. Soc. Jpn 119–122 (2013)
159.
Zurück zum Zitat B.C. Stipe, T.C. Strand, C.C. Poon, H. Balamane, T.D. Boone, J.A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D.S. Kercher, N. Robertson, T.R. Albrecht, B.D. Terris, Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nat. Photon. 4, 484–488 (2010) B.C. Stipe, T.C. Strand, C.C. Poon, H. Balamane, T.D. Boone, J.A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D.S. Kercher, N. Robertson, T.R. Albrecht, B.D. Terris, Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nat. Photon. 4, 484–488 (2010)
160.
Zurück zum Zitat T. Matsumoto, F. Akagi, M. Mochizuki, H. Miyamoto, B. Stipe, Integrated head design using a nanobeak antenna for thermally assisted magnetic recording. Opt. Express 20, 18946–18954 (2012)PubMedCrossRef T. Matsumoto, F. Akagi, M. Mochizuki, H. Miyamoto, B. Stipe, Integrated head design using a nanobeak antenna for thermally assisted magnetic recording. Opt. Express 20, 18946–18954 (2012)PubMedCrossRef
161.
Zurück zum Zitat H. Chen, K. Liu, L. Hu, A.A. Al-Ghamdi, X. Fang, New concept ultraviolet photodetectors. Mater. Today 18, 493–502 (2015)CrossRef H. Chen, K. Liu, L. Hu, A.A. Al-Ghamdi, X. Fang, New concept ultraviolet photodetectors. Mater. Today 18, 493–502 (2015)CrossRef
162.
Zurück zum Zitat M. Garin, J. Heinonen, L. Werner, T.P. Pasanen, V. Vahanissi, A. Haarahiltunen, M.A. Juntunen, H. Savin, Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130. Phys. Rev. Lett. 125, 117702 (2020)PubMedCrossRef M. Garin, J. Heinonen, L. Werner, T.P. Pasanen, V. Vahanissi, A. Haarahiltunen, M.A. Juntunen, H. Savin, Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130. Phys. Rev. Lett. 125, 117702 (2020)PubMedCrossRef
163.
Zurück zum Zitat M.A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, H. Savin, Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction. Nat. Photonics 10, 777–781 (2016)CrossRef M.A. Juntunen, J. Heinonen, V. Vähänissi, P. Repo, D. Valluru, H. Savin, Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction. Nat. Photonics 10, 777–781 (2016)CrossRef
164.
Zurück zum Zitat C. Zhang, Y. Luo, S.A. Maier, X. Li, Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands. Laser Photon. Rev. 16 (2022) C. Zhang, Y. Luo, S.A. Maier, X. Li, Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands. Laser Photon. Rev. 16 (2022)
165.
Zurück zum Zitat K.T. Lin, H. Lin, B. Jia, Plasmonic nanostructures in photodetection, energy conversion and beyond. Nanophotonics 9, 3135–3163 (2020)CrossRef K.T. Lin, H. Lin, B. Jia, Plasmonic nanostructures in photodetection, energy conversion and beyond. Nanophotonics 9, 3135–3163 (2020)CrossRef
166.
Zurück zum Zitat Y.S. Zhu, H.X. Xu, P. Yu, Z.M. Wang, Engineering plasmonic hot carrier dynamics toward efficient photodetection. Appl. Phys. Rev. 8 (2021) Y.S. Zhu, H.X. Xu, P. Yu, Z.M. Wang, Engineering plasmonic hot carrier dynamics toward efficient photodetection. Appl. Phys. Rev. 8 (2021)
167.
Zurück zum Zitat A. Dorodnyy, Y. Salamin, P. Ma, J. Vukajlovic Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. Fontcuberta i Morral, J. Leuthold, Plasmonic photodetectors. IEEE J. Select. Top. Quantum Electron. 24, 1–13 (2018) A. Dorodnyy, Y. Salamin, P. Ma, J. Vukajlovic Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. Fontcuberta i Morral, J. Leuthold, Plasmonic photodetectors. IEEE J. Select. Top. Quantum Electron. 24, 1–13 (2018)
168.
Zurück zum Zitat M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with active optical antennas. Science 332, 702–704 (2011)PubMedCrossRef M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with active optical antennas. Science 332, 702–704 (2011)PubMedCrossRef
169.
Zurück zum Zitat C. Scales, P. Berini, Thin-film schottky barrier photodetector models. Ieee J Quantum Elect 46, 633–643 (2010)CrossRef C. Scales, P. Berini, Thin-film schottky barrier photodetector models. Ieee J Quantum Elect 46, 633–643 (2010)CrossRef
170.
Zurück zum Zitat C. Zhang, K. Wu, V. Giannini, X. Li, Planar hot-electron photodetection with tamm plasmons. ACS Nano 11, 1719–1727 (2017)PubMedCrossRef C. Zhang, K. Wu, V. Giannini, X. Li, Planar hot-electron photodetection with tamm plasmons. ACS Nano 11, 1719–1727 (2017)PubMedCrossRef
171.
Zurück zum Zitat A. Safaei, S. Chandra, M.W. Shabbir, M.N. Leuenberger, D. Chanda, Dirac plasmon-assisted asymmetric hot carrier generation for room-temperature infrared detection. Nat. Commun. 10 (2019) A. Safaei, S. Chandra, M.W. Shabbir, M.N. Leuenberger, D. Chanda, Dirac plasmon-assisted asymmetric hot carrier generation for room-temperature infrared detection. Nat. Commun. 10 (2019)
172.
Zurück zum Zitat M. Abbasi, C.I. Evans, L. Chen, D. Natelson, Single metal photodetectors using plasmonically-active asymmetric gold nanostructures. ACS Nano 14, 17535–17542 (2020)PubMedCrossRef M. Abbasi, C.I. Evans, L. Chen, D. Natelson, Single metal photodetectors using plasmonically-active asymmetric gold nanostructures. ACS Nano 14, 17535–17542 (2020)PubMedCrossRef
173.
Zurück zum Zitat S. Kunwar, S. Pandit, J.H. Jeong, J. Lee, Improved photoresponse of UV photodetectors by the incorporation of plasmonic nanoparticles on GaN through the resonant coupling of localized surface plasmon resonance. Nano-micro Lett. 12 (2020) S. Kunwar, S. Pandit, J.H. Jeong, J. Lee, Improved photoresponse of UV photodetectors by the incorporation of plasmonic nanoparticles on GaN through the resonant coupling of localized surface plasmon resonance. Nano-micro Lett. 12 (2020)
174.
Zurück zum Zitat W. Li, J. Valentine, Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014)PubMedCrossRef W. Li, J. Valentine, Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014)PubMedCrossRef
175.
Zurück zum Zitat Z. Wang, X. Wang, J. Liu, An efficient nanophotonic hot electron solar-blind UV detector. ACS Photon. 5, 3989–3995 (2018)CrossRef Z. Wang, X. Wang, J. Liu, An efficient nanophotonic hot electron solar-blind UV detector. ACS Photon. 5, 3989–3995 (2018)CrossRef
176.
Zurück zum Zitat H. Chalabi, D. Schoen, M.L. Brongersma, Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014)PubMedCrossRef H. Chalabi, D. Schoen, M.L. Brongersma, Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014)PubMedCrossRef
177.
Zurück zum Zitat D.A. Bandurin, D. Svintsov, I. Gayduchenko, S.G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I.V. Grigorieva, M. Polini, G.N. Goltsman, A.K. Geim, G. Fedorov, Resonant terahertz detection using graphene plasmons. Nat. Commun. 9, 5392 (2018)PubMedPubMedCentralCrossRef D.A. Bandurin, D. Svintsov, I. Gayduchenko, S.G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I.V. Grigorieva, M. Polini, G.N. Goltsman, A.K. Geim, G. Fedorov, Resonant terahertz detection using graphene plasmons. Nat. Commun. 9, 5392 (2018)PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat W. Li, J.G. Valentine, Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6, 177–191 (2017)CrossRef W. Li, J.G. Valentine, Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6, 177–191 (2017)CrossRef
179.
Zurück zum Zitat F. Yi, H. Zhu, J.C. Reed, E. Cubukcu, Plasmonically enhanced thermomechanical detection of infrared radiation. Nano Lett. 13, 1638–1643 (2013)PubMedCrossRef F. Yi, H. Zhu, J.C. Reed, E. Cubukcu, Plasmonically enhanced thermomechanical detection of infrared radiation. Nano Lett. 13, 1638–1643 (2013)PubMedCrossRef
180.
Zurück zum Zitat F. Yi, H. Zhu, J.C. Reed, A.Y. Zhu, E. Cubukcu, Thermoplasmonic membrane-based infrared detector. IEEE Photonic Tech. L. 26, 202–205 (2014)CrossRef F. Yi, H. Zhu, J.C. Reed, A.Y. Zhu, E. Cubukcu, Thermoplasmonic membrane-based infrared detector. IEEE Photonic Tech. L. 26, 202–205 (2014)CrossRef
181.
Zurück zum Zitat A.A.A. Muheeb Ahmad Alkhalayfeh, Mohd Zamir Pakhuruddin, An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renew. Sustain. Energy Rev. 141, 110726 (2021) A.A.A. Muheeb Ahmad Alkhalayfeh, Mohd Zamir Pakhuruddin, An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renew. Sustain. Energy Rev. 141, 110726 (2021)
182.
Zurück zum Zitat D. Shin, G. Kang, P. Gupta, S. Behera, H. Lee, A.M. Urbas, W. Park, K. Kim, Thermoplasmonic and photothermal metamaterials for solar energy applications. Adv. Opt. Mater. 6, 1800317 (2018)CrossRef D. Shin, G. Kang, P. Gupta, S. Behera, H. Lee, A.M. Urbas, W. Park, K. Kim, Thermoplasmonic and photothermal metamaterials for solar energy applications. Adv. Opt. Mater. 6, 1800317 (2018)CrossRef
183.
Zurück zum Zitat C. Kuppe, K.R. Rusimova, L. Ohnoutek, D. Slavov, V.K. Valev, “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 8, 1901166 (2019)CrossRef C. Kuppe, K.R. Rusimova, L. Ohnoutek, D. Slavov, V.K. Valev, “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 8, 1901166 (2019)CrossRef
184.
Zurück zum Zitat S.K. Cushing, N. Wu, Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett. 7, 666–675 (2016)PubMedCrossRef S.K. Cushing, N. Wu, Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett. 7, 666–675 (2016)PubMedCrossRef
185.
Zurück zum Zitat W.R. Erwin, H.F. Zarick, E.M. Talbert, R. Bardhan, Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci. 9, 1577–1601 (2016)CrossRef W.R. Erwin, H.F. Zarick, E.M. Talbert, R. Bardhan, Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci. 9, 1577–1601 (2016)CrossRef
186.
Zurück zum Zitat H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)PubMedCrossRef H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)PubMedCrossRef
187.
Zurück zum Zitat Y.H. Jang, Y.J. Jang, S. Kim, L.N. Quan, K. Chung, D.H. Kim, Plasmonic solar cells: from rational design to mechanism overview. Chem. Rev. 116, 14982–15034 (2016)PubMedCrossRef Y.H. Jang, Y.J. Jang, S. Kim, L.N. Quan, K. Chung, D.H. Kim, Plasmonic solar cells: from rational design to mechanism overview. Chem. Rev. 116, 14982–15034 (2016)PubMedCrossRef
188.
Zurück zum Zitat F. Enrichi, A. Quandt, G.C. Righini, Plasmonic enhanced solar cells: summary of possible strategies and recent results. Renew. Sustain. Energy Rev. 82, 2433–2439 (2018)CrossRef F. Enrichi, A. Quandt, G.C. Righini, Plasmonic enhanced solar cells: summary of possible strategies and recent results. Renew. Sustain. Energy Rev. 82, 2433–2439 (2018)CrossRef
189.
Zurück zum Zitat R.K. Kashyap, P.P. Pillai, Plasmonic nanoparticles boost solar-to-electricity generation at ambient conditions. Nano Lett. 24, 5585–5592 (2024)PubMedCrossRef R.K. Kashyap, P.P. Pillai, Plasmonic nanoparticles boost solar-to-electricity generation at ambient conditions. Nano Lett. 24, 5585–5592 (2024)PubMedCrossRef
190.
Zurück zum Zitat K. Ueno, T. Oshikiri, Q. Sun, X. Shi, H. Misawa, Solid-state plasmonic solar cells. Chem. Rev. 118, 2955–2993 (2018)PubMedCrossRef K. Ueno, T. Oshikiri, Q. Sun, X. Shi, H. Misawa, Solid-state plasmonic solar cells. Chem. Rev. 118, 2955–2993 (2018)PubMedCrossRef
191.
Zurück zum Zitat Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, C.W. Qiu, Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021)CrossRef Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, C.W. Qiu, Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021)CrossRef
192.
Zurück zum Zitat C.C. Chang, W.J.M. Kort-Kamp, J. Nogan, T.S. Luk, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, M. Sykora, H.T. Chen, High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Lett. 18, 7665–7673 (2018)PubMedCrossRef C.C. Chang, W.J.M. Kort-Kamp, J. Nogan, T.S. Luk, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, M. Sykora, H.T. Chen, High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Lett. 18, 7665–7673 (2018)PubMedCrossRef
193.
Zurück zum Zitat D. Fan, T. Burger, S. McSherry, B. Lee, A. Lenert, S.R. Forrest, Near-perfect photon utilization in an air-bridge thermophotovoltaic cell. Nature 586, 237–241 (2020)PubMedCrossRef D. Fan, T. Burger, S. McSherry, B. Lee, A. Lenert, S.R. Forrest, Near-perfect photon utilization in an air-bridge thermophotovoltaic cell. Nature 586, 237–241 (2020)PubMedCrossRef
194.
Zurück zum Zitat A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanovic, M. Soljacic, E.N. Wang, A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014)PubMedCrossRef A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanovic, M. Soljacic, E.N. Wang, A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014)PubMedCrossRef
195.
Zurück zum Zitat B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials nanostructured designs, and applications. Adv. Mater. 34, e2107351 (2022)PubMedCrossRef B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials nanostructured designs, and applications. Adv. Mater. 34, e2107351 (2022)PubMedCrossRef
196.
Zurück zum Zitat A. LaPotin, K.L. Schulte, M.A. Steiner, K. Buznitsky, C.C. Kelsall, D.J. Friedman, E.J. Tervo, R.M. France, M.R. Young, A. Rohskopf, S. Verma, E.N. Wang, A. Henry, Thermophotovoltaic efficiency of 40. Nature 604, 287–291 (2022)PubMedPubMedCentralCrossRef A. LaPotin, K.L. Schulte, M.A. Steiner, K. Buznitsky, C.C. Kelsall, D.J. Friedman, E.J. Tervo, R.M. France, M.R. Young, A. Rohskopf, S. Verma, E.N. Wang, A. Henry, Thermophotovoltaic efficiency of 40. Nature 604, 287–291 (2022)PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat T. Krekeler, S.S. Rout, G.V. Krishnamurthy, M. Störmer, M. Arya, A. Ganguly, D.S. Sutherland, S.I. Bozhevolnyi, M. Ritter, K. Pedersen, A.Y. Petrov, M. Eich, M. Chirumamilla, Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C. Adv. Opt. Mater. (2021) 2100323 T. Krekeler, S.S. Rout, G.V. Krishnamurthy, M. Störmer, M. Arya, A. Ganguly, D.S. Sutherland, S.I. Bozhevolnyi, M. Ritter, K. Pedersen, A.Y. Petrov, M. Eich, M. Chirumamilla, Unprecedented thermal stability of plasmonic titanium nitride films up to 1400 °C. Adv. Opt. Mater. (2021) 2100323
198.
Zurück zum Zitat V. Rinnerbauer, A. Lenert, D.M. Bierman, Y.X. Yeng, W.R. Chan, R.D. Geil, J.J. Senkevich, J.D. Joannopoulos, E.N. Wang, M. Soljačić, I. Celanovic, Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. 4, 1400334 (2014)CrossRef V. Rinnerbauer, A. Lenert, D.M. Bierman, Y.X. Yeng, W.R. Chan, R.D. Geil, J.J. Senkevich, J.D. Joannopoulos, E.N. Wang, M. Soljačić, I. Celanovic, Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. 4, 1400334 (2014)CrossRef
199.
Zurück zum Zitat A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, E. Meyhofer, Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806–811 (2018)PubMedCrossRef A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, E. Meyhofer, Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806–811 (2018)PubMedCrossRef
200.
Zurück zum Zitat G.T. Papadakis, S. Buddhiraju, Z. Zhao, B. Zhao, S. Fan, Broadening near-field emission for performance enhancement in thermophotovoltaics. Nano Lett. 20, 1654–1661 (2020)PubMedCrossRef G.T. Papadakis, S. Buddhiraju, Z. Zhao, B. Zhao, S. Fan, Broadening near-field emission for performance enhancement in thermophotovoltaics. Nano Lett. 20, 1654–1661 (2020)PubMedCrossRef
201.
Zurück zum Zitat R. St-Gelais, G.R. Bhatt, L. Zhu, S. Fan, M. Lipson, Hot carrier-based near-field thermophotovoltaic energy conversion. ACS Nano 11, 3001–3009 (2017)PubMedCrossRef R. St-Gelais, G.R. Bhatt, L. Zhu, S. Fan, M. Lipson, Hot carrier-based near-field thermophotovoltaic energy conversion. ACS Nano 11, 3001–3009 (2017)PubMedCrossRef
202.
Zurück zum Zitat X. Liu, R.Z. Zhang, Z. Zhang, Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes. ACS Photon. 1, 785–789 (2014)CrossRef X. Liu, R.Z. Zhang, Z. Zhang, Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes. ACS Photon. 1, 785–789 (2014)CrossRef
203.
Zurück zum Zitat M.R.S. Dias, T. Gong, M.A. Duncan, S.C. Ness, S.J. McCormack, M.S. Leite, J.N. Munday, Photonics roadmap for ultra-high-temperature thermophotovoltaics. Joule 7, 2209–2227 (2023)CrossRef M.R.S. Dias, T. Gong, M.A. Duncan, S.C. Ness, S.J. McCormack, M.S. Leite, J.N. Munday, Photonics roadmap for ultra-high-temperature thermophotovoltaics. Joule 7, 2209–2227 (2023)CrossRef
204.
Zurück zum Zitat A. Lenert, S.R. Forrest, Nexus of solar and thermal photovoltaic technology could help solve the energy storage problem. Joule 6, 1144–1147 (2022)CrossRef A. Lenert, S.R. Forrest, Nexus of solar and thermal photovoltaic technology could help solve the energy storage problem. Joule 6, 1144–1147 (2022)CrossRef
205.
Zurück zum Zitat M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019)CrossRef M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019)CrossRef
206.
Zurück zum Zitat G. Liu, T. Chen, J. Xu, G. Yao, J. Xie, Y. Cheng, Z. Miao, K. Wang, Salt-rejecting solar interfacial evaporation. Cell Rep. Phys. Sci. 2, 100310 (2021)CrossRef G. Liu, T. Chen, J. Xu, G. Yao, J. Xie, Y. Cheng, Z. Miao, K. Wang, Salt-rejecting solar interfacial evaporation. Cell Rep. Phys. Sci. 2, 100310 (2021)CrossRef
207.
Zurück zum Zitat Z. Wang, T. Horseman, A.P. Straub, N.Y. Yip, D. Li, M. Elimelech, S. Lin, Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5 (2019) eaax0763 Z. Wang, T. Horseman, A.P. Straub, N.Y. Yip, D. Li, M. Elimelech, S. Lin, Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5 (2019) eaax0763
208.
Zurück zum Zitat L. Zhang, Z. Xu, L. Zhao, B. Bhatia, Y. Zhong, S. Gong, E.N. Wang, Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021)CrossRef L. Zhang, Z. Xu, L. Zhao, B. Bhatia, Y. Zhong, S. Gong, E.N. Wang, Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021)CrossRef
209.
Zurück zum Zitat P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018)CrossRef P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018)CrossRef
210.
Zurück zum Zitat Z. Xu, Z. Li, Y. Jiang, G. Xu, M. Zhu, W.C. Law, K.T. Yong, Y. Wang, C. Yang, B. Dong, F. Xing, Recent advances in solar-driven evaporation systems. J. Mater. Chem. A 8, 25571–25600 (2020)CrossRef Z. Xu, Z. Li, Y. Jiang, G. Xu, M. Zhu, W.C. Law, K.T. Yong, Y. Wang, C. Yang, B. Dong, F. Xing, Recent advances in solar-driven evaporation systems. J. Mater. Chem. A 8, 25571–25600 (2020)CrossRef
211.
Zurück zum Zitat G. Liu, J. Xu, K. Wang, Solar water evaporation by black photothermal sheets. Nano Energy 41, 269–284 (2017)CrossRef G. Liu, J. Xu, K. Wang, Solar water evaporation by black photothermal sheets. Nano Energy 41, 269–284 (2017)CrossRef
212.
Zurück zum Zitat A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal membrane distillation for seawater desalination. Adv. Mater. 29 (2017) A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal membrane distillation for seawater desalination. Adv. Mater. 29 (2017)
213.
Zurück zum Zitat O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, N.J. Halas, Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013)PubMedCrossRef O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, N.J. Halas, Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013)PubMedCrossRef
214.
Zurück zum Zitat M.S. Zielinski, J.W. Choi, T. La Grange, M. Modestino, S.M. Hashemi, Y. Pu, S. Birkhold, J.A. Hubbell, D. Psaltis, Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 16, 2159–2167 (2016)PubMedCrossRef M.S. Zielinski, J.W. Choi, T. La Grange, M. Modestino, S.M. Hashemi, Y. Pu, S. Birkhold, J.A. Hubbell, D. Psaltis, Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 16, 2159–2167 (2016)PubMedCrossRef
215.
Zurück zum Zitat Z. Fang, Y.R. Zhen, O. Neumann, A. Polman, F.J. Garcia de Abajo, P. Nordlander, N.J. Halas, Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736–1742 (2013)PubMedPubMedCentralCrossRef Z. Fang, Y.R. Zhen, O. Neumann, A. Polman, F.J. Garcia de Abajo, P. Nordlander, N.J. Halas, Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736–1742 (2013)PubMedPubMedCentralCrossRef
216.
Zurück zum Zitat M. Gao, P.K.N. Connor, G.W. Ho, Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci. 9, 3151–3160 (2016)CrossRef M. Gao, P.K.N. Connor, G.W. Ho, Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci. 9, 3151–3160 (2016)CrossRef
217.
Zurück zum Zitat Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, T. Deng, Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 10, 3234–3239 (2014)PubMedCrossRef Z. Wang, Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang, W. Shang, T. Deng, Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 10, 3234–3239 (2014)PubMedCrossRef
218.
Zurück zum Zitat X. Wang, Y. He, X. Liu, G. Cheng, J. Zhu, Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 195, 414–425 (2017)CrossRef X. Wang, Y. He, X. Liu, G. Cheng, J. Zhu, Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 195, 414–425 (2017)CrossRef
219.
Zurück zum Zitat L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393–398 (2016)CrossRef L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393–398 (2016)CrossRef
220.
Zurück zum Zitat Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, T. Deng, A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015)PubMedCrossRef Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, T. Deng, A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015)PubMedCrossRef
221.
Zurück zum Zitat H. Liu, X. Zhang, Z. Hong, Z. Pu, Q. Yao, J. Shi, G. Yang, B. Mi, B. Yang, X. Liu, H. Jiang, X. Hu, A bioinspired capillary-driven pump for solar vapor generation. Nano Energy 42, 115–121 (2017)CrossRef H. Liu, X. Zhang, Z. Hong, Z. Pu, Q. Yao, J. Shi, G. Yang, B. Mi, B. Yang, X. Liu, H. Jiang, X. Hu, A bioinspired capillary-driven pump for solar vapor generation. Nano Energy 42, 115–121 (2017)CrossRef
222.
Zurück zum Zitat K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, W.J. Padilla, Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015)PubMedCrossRef K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, W.J. Padilla, Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015)PubMedCrossRef
223.
Zurück zum Zitat L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016)PubMedPubMedCentralCrossRef L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016)PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat L. Mascaretti, A. Schirato, R. Zbořil, Š Kment, P. Schmuki, A. Alabastri, A. Naldoni, Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy 83, 105828 (2021)CrossRef L. Mascaretti, A. Schirato, R. Zbořil, Š Kment, P. Schmuki, A. Alabastri, A. Naldoni, Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy 83, 105828 (2021)CrossRef
225.
Zurück zum Zitat J. Chen, J. Feng, Z. Li, P. Xu, X. Wang, W. Yin, M. Wang, X. Ge, Y. Yin, Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 19, 400–407 (2019)PubMedCrossRef J. Chen, J. Feng, Z. Li, P. Xu, X. Wang, W. Yin, M. Wang, X. Ge, Y. Yin, Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 19, 400–407 (2019)PubMedCrossRef
226.
Zurück zum Zitat M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, Z. Yang, X. Yan, J. Song, Y. Wang, E. Hitz, W. Luo, M. Lu, B. Yang, L. Hu, Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018)CrossRef M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, Z. Yang, X. Yan, J. Song, Y. Wang, E. Hitz, W. Luo, M. Lu, B. Yang, L. Hu, Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018)CrossRef
227.
Zurück zum Zitat Y. Yang, X. Yang, L. Fu, M. Zou, A. Cao, Y. Du, Q. Yuan, C.H. Yan, Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination. ACS Energy Lett. 3, 1165–1171 (2018)CrossRef Y. Yang, X. Yang, L. Fu, M. Zou, A. Cao, Y. Du, Q. Yuan, C.H. Yan, Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination. ACS Energy Lett. 3, 1165–1171 (2018)CrossRef
228.
Zurück zum Zitat Z. Huang, Y. Liu, S. Li, C.S. Lee, X.H. Zhang, From materials to devices: rationally designing solar steam system for advanced applications. Small Methods 6, e2200835 (2022)PubMedCrossRef Z. Huang, Y. Liu, S. Li, C.S. Lee, X.H. Zhang, From materials to devices: rationally designing solar steam system for advanced applications. Small Methods 6, e2200835 (2022)PubMedCrossRef
229.
Zurück zum Zitat O. Neumann, A.D. Neumann, S. Tian, C. Thibodeaux, S. Shubhankar, J. Müller, E. Silva, A. Alabastri, S.W. Bishnoi, P. Nordlander, N.J. Halas, Combining solar steam processing and solar distillation for fully off-grid production of cellulosic bioethanol. ACS Energy Lett. 2, 8–13 (2016)CrossRef O. Neumann, A.D. Neumann, S. Tian, C. Thibodeaux, S. Shubhankar, J. Müller, E. Silva, A. Alabastri, S.W. Bishnoi, P. Nordlander, N.J. Halas, Combining solar steam processing and solar distillation for fully off-grid production of cellulosic bioethanol. ACS Energy Lett. 2, 8–13 (2016)CrossRef
230.
Zurück zum Zitat E. Bellos, C. Tzivanidis, Alternative designs of parabolic trough solar collectors. Prog. Energy Combust. Sci. 71, 81–117 (2019)CrossRef E. Bellos, C. Tzivanidis, Alternative designs of parabolic trough solar collectors. Prog. Energy Combust. Sci. 71, 81–117 (2019)CrossRef
231.
Zurück zum Zitat A.H. Elsheikh, S.W. Sharshir, M.E. Mostafa, F.A. Essa, M.K. Ahmed Ali, Applications of nanofluids in solar energy: a review of recent advances. Renew. Sustain. Energy Rev. 82, 3483–3502 (2018) A.H. Elsheikh, S.W. Sharshir, M.E. Mostafa, F.A. Essa, M.K. Ahmed Ali, Applications of nanofluids in solar energy: a review of recent advances. Renew. Sustain. Energy Rev. 82, 3483–3502 (2018)
232.
Zurück zum Zitat A.R. Mallah, M.N. Mohd Zubir, O.A. Alawi, K.M. Salim Newaz, A.B. Mohamad Badry, Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: fundamentals and applications. Solar Energy Mater. Solar Cells 201, 110084 (2019) A.R. Mallah, M.N. Mohd Zubir, O.A. Alawi, K.M. Salim Newaz, A.B. Mohamad Badry, Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: fundamentals and applications. Solar Energy Mater. Solar Cells 201, 110084 (2019)
233.
Zurück zum Zitat O.Z. Sharaf, R.A. Taylor, E. Abu-Nada, On the colloidal and chemical stability of solar nanofluids: from nanoscale interactions to recent advances. Phys. Rep. 867, 1–84 (2020)CrossRef O.Z. Sharaf, R.A. Taylor, E. Abu-Nada, On the colloidal and chemical stability of solar nanofluids: from nanoscale interactions to recent advances. Phys. Rep. 867, 1–84 (2020)CrossRef
234.
Zurück zum Zitat C. Qin, K. Kang, I. Lee, B.J. Lee, Optimization of the spectral absorption coefficient of a plasmonic nanofluid for a direct absorption solar collector. Sol. Energy 169, 231–236 (2018)CrossRef C. Qin, K. Kang, I. Lee, B.J. Lee, Optimization of the spectral absorption coefficient of a plasmonic nanofluid for a direct absorption solar collector. Sol. Energy 169, 231–236 (2018)CrossRef
235.
Zurück zum Zitat A.R. Mallah, S.N. Kazi, M.N.M. Zubir, A. Badarudin, Blended morphologies of plasmonic nanofluids for direct absorption applications. Appl. Energy 229, 505–521 (2018)CrossRef A.R. Mallah, S.N. Kazi, M.N.M. Zubir, A. Badarudin, Blended morphologies of plasmonic nanofluids for direct absorption applications. Appl. Energy 229, 505–521 (2018)CrossRef
236.
Zurück zum Zitat C. Qin, J.B. Kim, B.J. Lee, Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids. Renew. Energy 143, 24–33 (2019)CrossRef C. Qin, J.B. Kim, B.J. Lee, Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids. Renew. Energy 143, 24–33 (2019)CrossRef
237.
Zurück zum Zitat O.Z. Sharaf, D.C. Kyritsis, E. Abu-Nada, Impact of nanofluids, radiation spectrum, and hydrodynamics on the performance of direct absorption solar collectors. Energy Convers. Manage. 156, 706–722 (2018)CrossRef O.Z. Sharaf, D.C. Kyritsis, E. Abu-Nada, Impact of nanofluids, radiation spectrum, and hydrodynamics on the performance of direct absorption solar collectors. Energy Convers. Manage. 156, 706–722 (2018)CrossRef
238.
Zurück zum Zitat B.J. Lee, K. Park, T. Walsh, L. Xu, Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. J. Solar Energy Eng. 134 (2012) B.J. Lee, K. Park, T. Walsh, L. Xu, Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. J. Solar Energy Eng. 134 (2012)
239.
Zurück zum Zitat J. Jeon, S. Park, B.J. Lee, Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Sol. Energy 132, 247–256 (2016)CrossRef J. Jeon, S. Park, B.J. Lee, Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Sol. Energy 132, 247–256 (2016)CrossRef
240.
Zurück zum Zitat M. Du, G.H. Tang, Plasmonic nanofluids based on gold nanorods/nanoellipsoids/ nanosheets for solar energy harvesting. Sol. Energy 137, 393–400 (2016)CrossRef M. Du, G.H. Tang, Plasmonic nanofluids based on gold nanorods/nanoellipsoids/ nanosheets for solar energy harvesting. Sol. Energy 137, 393–400 (2016)CrossRef
241.
Zurück zum Zitat B. Fu, J. Zhang, H. Chen, H. Guo, C. Song, W. Shang, P. Tao, T. Deng, Optical nanofluids for direct absorption-based solar-thermal energy harvesting at medium-to-high temperatures. Curr. Opin. Chem. Eng. 25, 51–56 (2019)CrossRef B. Fu, J. Zhang, H. Chen, H. Guo, C. Song, W. Shang, P. Tao, T. Deng, Optical nanofluids for direct absorption-based solar-thermal energy harvesting at medium-to-high temperatures. Curr. Opin. Chem. Eng. 25, 51–56 (2019)CrossRef
242.
Zurück zum Zitat Z. Said, S. Arora, S. Farooq, L.S. Sundar, C. Li, A. Allouhi, Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: Academic insights and perspectives. Sol. Energy Mater. Sol. Cells 236, 111504 (2022)CrossRef Z. Said, S. Arora, S. Farooq, L.S. Sundar, C. Li, A. Allouhi, Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: Academic insights and perspectives. Sol. Energy Mater. Sol. Cells 236, 111504 (2022)CrossRef
243.
Zurück zum Zitat S. Santoro, A.H. Avci, A. Politano, E. Curcio, The advent of thermoplasmonic membrane distillation. Chem. Soc. Rev. 51, 6087–6125 (2022)PubMedCrossRef S. Santoro, A.H. Avci, A. Politano, E. Curcio, The advent of thermoplasmonic membrane distillation. Chem. Soc. Rev. 51, 6087–6125 (2022)PubMedCrossRef
244.
Zurück zum Zitat C. Walker, E. Mitridis, T. Kreiner, H. Eghlidi, T.M. Schutzius, D. Poulikakos, Transparent metasurfaces counteracting fogging by harnessing sunlight. Nano Lett. 19, 1595–1604 (2019)PubMedCrossRef C. Walker, E. Mitridis, T. Kreiner, H. Eghlidi, T.M. Schutzius, D. Poulikakos, Transparent metasurfaces counteracting fogging by harnessing sunlight. Nano Lett. 19, 1595–1604 (2019)PubMedCrossRef
245.
Zurück zum Zitat X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370, 786–791 (2020)PubMedCrossRef X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370, 786–791 (2020)PubMedCrossRef
246.
Zurück zum Zitat G. Jonsson, D. Tordera, T. Pakizeh, M. Jaysankar, V. Miljkovic, L. Tong, M.P. Jonsson, A. Dmitriev, Solar transparent radiators by optical nanoantennas. Nano Lett. 17, 6766–6772 (2017)PubMedCrossRef G. Jonsson, D. Tordera, T. Pakizeh, M. Jaysankar, V. Miljkovic, L. Tong, M.P. Jonsson, A. Dmitriev, Solar transparent radiators by optical nanoantennas. Nano Lett. 17, 6766–6772 (2017)PubMedCrossRef
247.
Zurück zum Zitat J.C. Ndukaife, V.M. Shalaev, A. Boltasseva, Plasmonics-turning loss into gain. Science 351, 334–335 (2016)PubMedCrossRef J.C. Ndukaife, V.M. Shalaev, A. Boltasseva, Plasmonics-turning loss into gain. Science 351, 334–335 (2016)PubMedCrossRef
248.
Zurück zum Zitat N. Maccaferri, Y. Zhao, T. Isoniemi, M. Iarossi, A. Parracino, G. Strangi, F. De Angelis, Hyperbolic meta-antennas enable full control of scattering and absorption of light. Nano Lett. 19, 1851–1859 (2019)PubMedCrossRef N. Maccaferri, Y. Zhao, T. Isoniemi, M. Iarossi, A. Parracino, G. Strangi, F. De Angelis, Hyperbolic meta-antennas enable full control of scattering and absorption of light. Nano Lett. 19, 1851–1859 (2019)PubMedCrossRef
249.
Zurück zum Zitat J. Xu, J. Mandal, A.P. Raman, Broadband directional control of thermal emission. Science 372, 393–397 (2021)PubMedCrossRef J. Xu, J. Mandal, A.P. Raman, Broadband directional control of thermal emission. Science 372, 393–397 (2021)PubMedCrossRef
250.
Zurück zum Zitat Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017)PubMedCrossRef Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017)PubMedCrossRef
251.
Zurück zum Zitat S.Y. Heo, G.J. Lee, D.H. Kim, Y.J. Kim, S. Ishii, M.S. Kim, T.J. Seok, B.J. Lee, H. Lee, Y.M. Song, A Janus emitter for passive heat release from enclosures. Sci. Adv. 6 (2020) eabb1906 S.Y. Heo, G.J. Lee, D.H. Kim, Y.J. Kim, S. Ishii, M.S. Kim, T.J. Seok, B.J. Lee, H. Lee, Y.M. Song, A Janus emitter for passive heat release from enclosures. Sci. Adv. 6 (2020) eabb1906
252.
Zurück zum Zitat M. Guo, L. Gao, Y. Wei, Y. Ma, Y. Jianyong, B. Ding, Solar transparent radiators based on in-plane worm-like assemblies of metal nanoparticles. Sol. Energy Mater. Sol. Cells 219, 110796 (2021)CrossRef M. Guo, L. Gao, Y. Wei, Y. Ma, Y. Jianyong, B. Ding, Solar transparent radiators based on in-plane worm-like assemblies of metal nanoparticles. Sol. Energy Mater. Sol. Cells 219, 110796 (2021)CrossRef
253.
Zurück zum Zitat E. Mitridis, T.M. Schutzius, A. Sicher, C.U. Hail, H. Eghlidi, D. Poulikakos, Metasurfaces leveraging solar energy for icephobicity. ACS Nano 12, 7009–7017 (2018)PubMedCrossRef E. Mitridis, T.M. Schutzius, A. Sicher, C.U. Hail, H. Eghlidi, D. Poulikakos, Metasurfaces leveraging solar energy for icephobicity. ACS Nano 12, 7009–7017 (2018)PubMedCrossRef
254.
Zurück zum Zitat S. Dash, J. de Ruiter, K.K. Varanasi, Photothermal trap utilizing solar illumination for ice mitigation. Sci. Adv. 4 (2018) eaat0127 S. Dash, J. de Ruiter, K.K. Varanasi, Photothermal trap utilizing solar illumination for ice mitigation. Sci. Adv. 4 (2018) eaat0127
255.
Zurück zum Zitat H. Zhang, G. Zhao, S. Wu, Y. Alsaid, W. Zhao, X. Yan, L. Liu, G. Zou, J. Lv, X. He, Z. He, J. Wang, Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proc. Natl. Acad. Sci. 118, e2100978118 (2021)PubMedPubMedCentralCrossRef H. Zhang, G. Zhao, S. Wu, Y. Alsaid, W. Zhao, X. Yan, L. Liu, G. Zou, J. Lv, X. He, Z. He, J. Wang, Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proc. Natl. Acad. Sci. 118, e2100978118 (2021)PubMedPubMedCentralCrossRef
256.
Zurück zum Zitat W. Li, C. Lin, W. Ma, Y. Li, F. Chu, B. Huang, S. Yao, Transparent selective photothermal coatings for antifogging applications. Cell Rep. Phys. Sci. 2, 100435 (2021)CrossRef W. Li, C. Lin, W. Ma, Y. Li, F. Chu, B. Huang, S. Yao, Transparent selective photothermal coatings for antifogging applications. Cell Rep. Phys. Sci. 2, 100435 (2021)CrossRef
257.
Zurück zum Zitat Y. Li, W. Ma, Y.S. Kwon, W. Li, S. Yao, B. Huang, Solar deicing nanocoatings adaptive to overhead power lines. Adv. Funct. Mater. 32 (2022) Y. Li, W. Ma, Y.S. Kwon, W. Li, S. Yao, B. Huang, Solar deicing nanocoatings adaptive to overhead power lines. Adv. Funct. Mater. 32 (2022)
258.
Zurück zum Zitat P. Yao, R. Yang, Q. Sun, G.H. Tang, X. Liu, J.H. Pu, M. Du, Transparent photothermal films with high optical selectivity for anti/de-icing. Appl. Therm. Eng. 242, 122490 (2024)CrossRef P. Yao, R. Yang, Q. Sun, G.H. Tang, X. Liu, J.H. Pu, M. Du, Transparent photothermal films with high optical selectivity for anti/de-icing. Appl. Therm. Eng. 242, 122490 (2024)CrossRef
259.
Zurück zum Zitat E. Mitridis, H. Lambley, S. Tröber, T.M. Schutzius, D. Poulikakos, Transparent photothermal metasurfaces amplifying superhydrophobicity by absorbing sunlight. ACS Nano 14, 11712–11721 (2020)PubMedCrossRef E. Mitridis, H. Lambley, S. Tröber, T.M. Schutzius, D. Poulikakos, Transparent photothermal metasurfaces amplifying superhydrophobicity by absorbing sunlight. ACS Nano 14, 11712–11721 (2020)PubMedCrossRef
260.
Zurück zum Zitat Z. Chen, J. Li, Y. Zheng, Heat-mediated optical manipulation. Chem. Rev. 122, 3122–3179 (2022)PubMedCrossRef Z. Chen, J. Li, Y. Zheng, Heat-mediated optical manipulation. Chem. Rev. 122, 3122–3179 (2022)PubMedCrossRef
261.
Zurück zum Zitat H. Sipova-Jungova, D. Andren, S. Jones, M. Kall, Nanoscale inorganic motors driven by light: principles, realizations, and opportunities. Chem. Rev. 120, 269–287 (2020)PubMedCrossRef H. Sipova-Jungova, D. Andren, S. Jones, M. Kall, Nanoscale inorganic motors driven by light: principles, realizations, and opportunities. Chem. Rev. 120, 269–287 (2020)PubMedCrossRef
262.
Zurück zum Zitat J. Frueh, S. Rutkowski, T. Si, M. Gai, C. Gao, S.I. Tverdokhlebov, G. Qiu, J. Schmitt, Q. He, Y.X. Ren, J. Wang, Propulsion mechanisms of light-driven plasmonic colloidal micromotors. Adv. Photon. Res. 3 (2021) J. Frueh, S. Rutkowski, T. Si, M. Gai, C. Gao, S.I. Tverdokhlebov, G. Qiu, J. Schmitt, Q. He, Y.X. Ren, J. Wang, Propulsion mechanisms of light-driven plasmonic colloidal micromotors. Adv. Photon. Res. 3 (2021)
263.
Zurück zum Zitat I. Buttinoni, G. Volpe, F. Kummel, G. Volpe, C. Bechinger, Active Brownian motion tunable by light. J. Phys. Condens. Matter Inst. Phys. J. 24, 284129 (2012)CrossRef I. Buttinoni, G. Volpe, F. Kummel, G. Volpe, C. Bechinger, Active Brownian motion tunable by light. J. Phys. Condens. Matter Inst. Phys. J. 24, 284129 (2012)CrossRef
264.
Zurück zum Zitat M. Liu, T. Zentgraf, Y. Liu, G. Bartal, X. Zhang, Light-driven nanoscale plasmonic motors. Nat. Nanotechnol. 5, 570–573 (2010)PubMedCrossRef M. Liu, T. Zentgraf, Y. Liu, G. Bartal, X. Zhang, Light-driven nanoscale plasmonic motors. Nat. Nanotechnol. 5, 570–573 (2010)PubMedCrossRef
265.
Zurück zum Zitat J.G. Gibbs, Y.P. Zhao, Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94 (2009) J.G. Gibbs, Y.P. Zhao, Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94 (2009)
266.
Zurück zum Zitat W. Qin, T. Peng, Y. Gao, F. Wang, X. Hu, K. Wang, J. Shi, D. Li, J. Ren, C. Fan, Catalysis-driven self-thermophoresis of janus plasmonic nanomotors. Angew. Chem. 129, 530–533 (2016)CrossRef W. Qin, T. Peng, Y. Gao, F. Wang, X. Hu, K. Wang, J. Shi, D. Li, J. Ren, C. Fan, Catalysis-driven self-thermophoresis of janus plasmonic nanomotors. Angew. Chem. 129, 530–533 (2016)CrossRef
267.
Zurück zum Zitat F. Meng, W. Hao, S. Yu, R. Feng, Y. Liu, F. Yu, P. Tao, W. Shang, J. Wu, C. Song, T. Deng, Vapor-enabled propulsion for plasmonic photothermal motor at the liquid/air interface. J. Am. Chem. Soc. 139, 12362–12365 (2017)PubMedCrossRef F. Meng, W. Hao, S. Yu, R. Feng, Y. Liu, F. Yu, P. Tao, W. Shang, J. Wu, C. Song, T. Deng, Vapor-enabled propulsion for plasmonic photothermal motor at the liquid/air interface. J. Am. Chem. Soc. 139, 12362–12365 (2017)PubMedCrossRef
268.
Zurück zum Zitat X. Wang, L. Baraban, V.R. Misko, F. Nori, T. Huang, G. Cuniberti, J. Fassbender, D. Makarov, Visible light actuated efficient exclusion between plasmonic Ag/AgCl micromotors and passive beads. Small 14, e1802537 (2018)PubMedCrossRef X. Wang, L. Baraban, V.R. Misko, F. Nori, T. Huang, G. Cuniberti, J. Fassbender, D. Makarov, Visible light actuated efficient exclusion between plasmonic Ag/AgCl micromotors and passive beads. Small 14, e1802537 (2018)PubMedCrossRef
269.
Zurück zum Zitat M. Franzl, S. Muinos-Landin, V. Holubec, F. Cichos, Fully steerable symmetric thermoplasmonic microswimmers. ACS Nano 15, 3434–3440 (2021)PubMedCrossRef M. Franzl, S. Muinos-Landin, V. Holubec, F. Cichos, Fully steerable symmetric thermoplasmonic microswimmers. ACS Nano 15, 3434–3440 (2021)PubMedCrossRef
270.
Zurück zum Zitat X. Wang, V. Sridhar, S. Guo, N. Talebi, A. Miguel-López, K. Hahn, P.A. van Aken, S. Sánchez, Fuel-free nanocap-like motors actuated under visible light. Adv. Funct. Mater. 28 (2018) X. Wang, V. Sridhar, S. Guo, N. Talebi, A. Miguel-López, K. Hahn, P.A. van Aken, S. Sánchez, Fuel-free nanocap-like motors actuated under visible light. Adv. Funct. Mater. 28 (2018)
271.
Zurück zum Zitat M. Xuan, Z. Wu, J. Shao, L. Dai, T. Si, Q. He, Near infrared light-powered janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138, 6492–6497 (2016)PubMedCrossRef M. Xuan, Z. Wu, J. Shao, L. Dai, T. Si, Q. He, Near infrared light-powered janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138, 6492–6497 (2016)PubMedCrossRef
272.
Zurück zum Zitat H. Ding, Z. Chen, C. Ponce, Y. Zheng, Optothermal rotation of micro-/nano-objects. Chem. Commun. 59, 2208–2221 (2023)CrossRef H. Ding, Z. Chen, C. Ponce, Y. Zheng, Optothermal rotation of micro-/nano-objects. Chem. Commun. 59, 2208–2221 (2023)CrossRef
273.
Zurück zum Zitat L. Shao, M. Käll, Light-driven rotation of plasmonic nanomotors. Adv. Funct. Mater. 28 (2018) L. Shao, M. Käll, Light-driven rotation of plasmonic nanomotors. Adv. Funct. Mater. 28 (2018)
274.
Zurück zum Zitat L. Shao, Z.J. Yang, D. Andrén, P. Johansson, M. Käll, Gold nanorod rotary motors driven by resonant light scattering. ACS Nano 9, 12542–12551 (2015)PubMedCrossRef L. Shao, Z.J. Yang, D. Andrén, P. Johansson, M. Käll, Gold nanorod rotary motors driven by resonant light scattering. ACS Nano 9, 12542–12551 (2015)PubMedCrossRef
276.
Zurück zum Zitat B. Zeng, Y. Wang, M.E. Zaytsev, C. Xia, H.J.W. Zandvliet, D. Lohse, Giant plasmonic bubbles nucleation under different ambient pressures. Phys. Rev. E 102, 063109 (2020)PubMedCrossRef B. Zeng, Y. Wang, M.E. Zaytsev, C. Xia, H.J.W. Zandvliet, D. Lohse, Giant plasmonic bubbles nucleation under different ambient pressures. Phys. Rev. E 102, 063109 (2020)PubMedCrossRef
277.
Zurück zum Zitat Y. Wang, M.E. Zaytsev, G. Lajoinie, H.L. The, J.C.T. Eijkel, A. van den Berg, M. Versluis, B.M. Weckhuysen, X. Zhang, H.J.W. Zandvliet, D. Lohse, Giant and explosive plasmonic bubbles by delayed nucleation. Proc. Natl. Acad. Sci. U.S.A. 115, 7676–7681 (2018)PubMedPubMedCentralCrossRef Y. Wang, M.E. Zaytsev, G. Lajoinie, H.L. The, J.C.T. Eijkel, A. van den Berg, M. Versluis, B.M. Weckhuysen, X. Zhang, H.J.W. Zandvliet, D. Lohse, Giant and explosive plasmonic bubbles by delayed nucleation. Proc. Natl. Acad. Sci. U.S.A. 115, 7676–7681 (2018)PubMedPubMedCentralCrossRef
278.
Zurück zum Zitat S. Jones, D. Andren, T.J. Antosiewicz, A. Stilgoe, H. Rubinsztein-Dunlop, M. Kall, Strong transient flows generated by thermoplasmonic bubble nucleation. ACS Nano 14, 17468–17475 (2020)PubMedPubMedCentralCrossRef S. Jones, D. Andren, T.J. Antosiewicz, A. Stilgoe, H. Rubinsztein-Dunlop, M. Kall, Strong transient flows generated by thermoplasmonic bubble nucleation. ACS Nano 14, 17468–17475 (2020)PubMedPubMedCentralCrossRef
279.
Zurück zum Zitat W.Y. Tsai, J.S. Huang, C.B. Huang, Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Lett. 14, 547–552 (2014)PubMedCrossRef W.Y. Tsai, J.S. Huang, C.B. Huang, Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Lett. 14, 547–552 (2014)PubMedCrossRef
280.
Zurück zum Zitat M. Xuan, R. Mestre, C. Gao, C. Zhou, Q. He, S. Sánchez, Noncontinuous super-diffusive dynamics of a light-activated nanobottle motor. Angew. Chem. 130, 6954–6958 (2018)CrossRef M. Xuan, R. Mestre, C. Gao, C. Zhou, Q. He, S. Sánchez, Noncontinuous super-diffusive dynamics of a light-activated nanobottle motor. Angew. Chem. 130, 6954–6958 (2018)CrossRef
281.
Zurück zum Zitat J. Feng, X. Li, T. Xu, X. Zhang, X. Du, Photothermal-driven micro/nanomotors: from structural design to potential applications. Acta Biomater. 173, 1–35 (2024)PubMedCrossRef J. Feng, X. Li, T. Xu, X. Zhang, X. Du, Photothermal-driven micro/nanomotors: from structural design to potential applications. Acta Biomater. 173, 1–35 (2024)PubMedCrossRef
282.
Zurück zum Zitat U. Das, R. Biswas, N. Mazumder, Elucidating thermal effects in plasmonic metal nanostructures: a tutorial review. Eur. Phys. J. Plus 137 (2022) U. Das, R. Biswas, N. Mazumder, Elucidating thermal effects in plasmonic metal nanostructures: a tutorial review. Eur. Phys. J. Plus 137 (2022)
283.
Zurück zum Zitat X. Meng, L. Liu, S. Ouyang, H. Xu, D. Wang, N. Zhao, J. Ye, Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 28, 6781–6803 (2016)PubMedCrossRef X. Meng, L. Liu, S. Ouyang, H. Xu, D. Wang, N. Zhao, J. Ye, Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 28, 6781–6803 (2016)PubMedCrossRef
284.
Zurück zum Zitat S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)PubMedCrossRef S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)PubMedCrossRef
285.
Zurück zum Zitat Z. Zhang, C. Zhang, H. Zheng, H. Xu, Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 52, 2506–2515 (2019)PubMedCrossRef Z. Zhang, C. Zhang, H. Zheng, H. Xu, Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 52, 2506–2515 (2019)PubMedCrossRef
286.
Zurück zum Zitat E. Cortes, W. Xie, J. Cambiasso, A.S. Jermyn, R. Sundararaman, P. Narang, S. Schlucker, S.A. Maier, Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8, 14880 (2017)PubMedPubMedCentralCrossRef E. Cortes, W. Xie, J. Cambiasso, A.S. Jermyn, R. Sundararaman, P. Narang, S. Schlucker, S.A. Maier, Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8, 14880 (2017)PubMedPubMedCentralCrossRef
287.
Zurück zum Zitat Y. Zhao, L. Sang, Z. Ren, Decoupling the role of thermoplasmonics effect and hot electron injection of metallic nanoparticles in photoelectrochemical system. Sol. Energy Mater. Sol. Cells 267, 112728 (2024)CrossRef Y. Zhao, L. Sang, Z. Ren, Decoupling the role of thermoplasmonics effect and hot electron injection of metallic nanoparticles in photoelectrochemical system. Sol. Energy Mater. Sol. Cells 267, 112728 (2024)CrossRef
288.
Zurück zum Zitat D. Mateo, J.L. Cerrillo, S. Durini, J. Gascon, Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 50, 2173–2210 (2021)PubMedCrossRef D. Mateo, J.L. Cerrillo, S. Durini, J. Gascon, Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 50, 2173–2210 (2021)PubMedCrossRef
289.
Zurück zum Zitat L. Mascaretti, A. Naldoni, Hot electron and thermal effects in plasmonic photocatalysis. J. Appl. Phys. 128, 041101 (2020)CrossRef L. Mascaretti, A. Naldoni, Hot electron and thermal effects in plasmonic photocatalysis. J. Appl. Phys. 128, 041101 (2020)CrossRef
290.
Zurück zum Zitat P. Christopher, H. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011)PubMedCrossRef P. Christopher, H. Xin, S. Linic, Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011)PubMedCrossRef
291.
Zurück zum Zitat H. Huang, L. Zhang, Z. Lv, R. Long, C. Zhang, Y. Lin, K. Wei, C. Wang, L. Chen, Z.Y. Li, Q. Zhang, Y. Luo, Y. Xiong, Unraveling surface plasmon decay in core-shell nanostructures toward broadband light-driven catalytic organic synthesis. J. Am. Chem. Soc. 138, 6822–6828 (2016)PubMedCrossRef H. Huang, L. Zhang, Z. Lv, R. Long, C. Zhang, Y. Lin, K. Wei, C. Wang, L. Chen, Z.Y. Li, Q. Zhang, Y. Luo, Y. Xiong, Unraveling surface plasmon decay in core-shell nanostructures toward broadband light-driven catalytic organic synthesis. J. Am. Chem. Soc. 138, 6822–6828 (2016)PubMedCrossRef
292.
Zurück zum Zitat P. Christopher, H. Xin, A. Marimuthu, S. Linic, Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012)PubMedCrossRef P. Christopher, H. Xin, A. Marimuthu, S. Linic, Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012)PubMedCrossRef
293.
Zurück zum Zitat A. Kumar, P. Choudhary, A. Kumar, P.H.C. Camargo, V. Krishnan, Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion. Environ. Remediat. Organ. Synth. Small 18, e2101638 (2022) A. Kumar, P. Choudhary, A. Kumar, P.H.C. Camargo, V. Krishnan, Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion. Environ. Remediat. Organ. Synth. Small 18, e2101638 (2022)
294.
Zurück zum Zitat X. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, Plasmonic photocatalysis, reports on progress in physics. Phys. Soc. 76, 046401 (2013) X. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, Plasmonic photocatalysis, reports on progress in physics. Phys. Soc. 76, 046401 (2013)
295.
Zurück zum Zitat S.W. Verbruggen, TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J. Photochem. Photobiol. C 24, 64–82 (2015)CrossRef S.W. Verbruggen, TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J. Photochem. Photobiol. C 24, 64–82 (2015)CrossRef
296.
Zurück zum Zitat J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis, Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009)PubMedCrossRef J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis, Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009)PubMedCrossRef
297.
Zurück zum Zitat F. Wang, C. Li, H. Chen, R. Jiang, L.D. Sun, Q. Li, J. Wang, J.C. Yu, C.H. Yan, Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588–5601 (2013)PubMedCrossRef F. Wang, C. Li, H. Chen, R. Jiang, L.D. Sun, Q. Li, J. Wang, J.C. Yu, C.H. Yan, Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588–5601 (2013)PubMedCrossRef
298.
Zurück zum Zitat J. Cui, Y. Li, L. Liu, L. Chen, J. Xu, J. Ma, G. Fang, E. Zhu, H. Wu, L. Zhao, L. Wang, Y. Huang, Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 15, 6295–6301 (2015)PubMedCrossRef J. Cui, Y. Li, L. Liu, L. Chen, J. Xu, J. Ma, G. Fang, E. Zhu, H. Wu, L. Zhao, L. Wang, Y. Huang, Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 15, 6295–6301 (2015)PubMedCrossRef
299.
Zurück zum Zitat A. Naldoni, Z.A. Kudyshev, L. Mascaretti, S.P. Sarmah, S. Rej, J.P. Froning, O. Tomanec, J.E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V.M. Shalaev, P. Schmuki, A. Boltasseva, R. Zboril, Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis. Nano Lett. 20, 3663–3672 (2020)PubMedCrossRef A. Naldoni, Z.A. Kudyshev, L. Mascaretti, S.P. Sarmah, S. Rej, J.P. Froning, O. Tomanec, J.E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V.M. Shalaev, P. Schmuki, A. Boltasseva, R. Zboril, Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis. Nano Lett. 20, 3663–3672 (2020)PubMedCrossRef
300.
Zurück zum Zitat Q. Yang, Q. Xu, S.H. Yu, H.L. Jiang, Pd Nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 128, 3749–3753 (2016)CrossRef Q. Yang, Q. Xu, S.H. Yu, H.L. Jiang, Pd Nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 128, 3749–3753 (2016)CrossRef
301.
Zurück zum Zitat W.H. Hung, M. Aykol, D. Valley, W. Hou, S.B. Cronin, Plasmon resonant enhancement of carbon monoxide catalysis. Nano Lett. 10, 1314–1318 (2010)PubMedCrossRef W.H. Hung, M. Aykol, D. Valley, W. Hou, S.B. Cronin, Plasmon resonant enhancement of carbon monoxide catalysis. Nano Lett. 10, 1314–1318 (2010)PubMedCrossRef
302.
Zurück zum Zitat X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011)PubMedCrossRef X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011)PubMedCrossRef
303.
Zurück zum Zitat D.F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J.M.P. Martirez, C.M. Krauter, S. Yazdi, M.J. McClain, E. Ringe, E.A. Carter, P. Nordlander, N.J. Halas, Heterometallic antenna−reactor complexes for photocatalysis. Proc. Natl. Acad. Sci. 113, 8916–8920 (2016)PubMedPubMedCentralCrossRef D.F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J.M.P. Martirez, C.M. Krauter, S. Yazdi, M.J. McClain, E. Ringe, E.A. Carter, P. Nordlander, N.J. Halas, Heterometallic antenna−reactor complexes for photocatalysis. Proc. Natl. Acad. Sci. 113, 8916–8920 (2016)PubMedPubMedCentralCrossRef
304.
Zurück zum Zitat U. Aslam, S. Chavez, S. Linic, Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12, 1000–1005 (2017)PubMedCrossRef U. Aslam, S. Chavez, S. Linic, Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12, 1000–1005 (2017)PubMedCrossRef
305.
Zurück zum Zitat A. Marimuthu, J. Zhang, S. Linic, Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013)PubMedCrossRef A. Marimuthu, J. Zhang, S. Linic, Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013)PubMedCrossRef
306.
Zurück zum Zitat L. Zhou, J.M.P. Martirez, J. Finzel, C. Zhang, D.F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E.A. Carter, P. Nordlander, N.J. Halas, Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020)CrossRef L. Zhou, J.M.P. Martirez, J. Finzel, C. Zhang, D.F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E.A. Carter, P. Nordlander, N.J. Halas, Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020)CrossRef
307.
Zurück zum Zitat C. Zhan, Q.X. Wang, J. Yi, L. Chen, D.Y. Wu, Y. Wang, Z.X. Xie, M. Moskovits, Z.Q. Tian, Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. 7 (2021) eabf0962 C. Zhan, Q.X. Wang, J. Yi, L. Chen, D.Y. Wu, Y. Wang, Z.X. Xie, M. Moskovits, Z.Q. Tian, Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. 7 (2021) eabf0962
308.
Zurück zum Zitat L. Zhou, D.F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E.A. Carter, P. Nordlander, N.J. Halas, Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018)PubMedCrossRef L. Zhou, D.F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E.A. Carter, P. Nordlander, N.J. Halas, Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018)PubMedCrossRef
309.
Zurück zum Zitat C. Vázquez-Vázquez, B. Vaz, V. Giannini, M. Pérez-Lorenzo, R.A. Alvarez-Puebla, M.A. Correa-Duarte, Nanoreactors for simultaneous remote thermal activation and optical monitoring of chemical reactions. J. Am. Chem. Soc. 135, 13616–13619 (2013)PubMedCrossRef C. Vázquez-Vázquez, B. Vaz, V. Giannini, M. Pérez-Lorenzo, R.A. Alvarez-Puebla, M.A. Correa-Duarte, Nanoreactors for simultaneous remote thermal activation and optical monitoring of chemical reactions. J. Am. Chem. Soc. 135, 13616–13619 (2013)PubMedCrossRef
310.
Zurück zum Zitat J.H. Kim, D. Hansora, P. Sharma, J.W. Jang, J.S. Lee, Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019)PubMedCrossRef J.H. Kim, D. Hansora, P. Sharma, J.W. Jang, J.S. Lee, Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019)PubMedCrossRef
311.
Zurück zum Zitat J. Zhang, X. Jin, P.I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, J.P. Claverie, Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 10, 4496–4503 (2016)PubMedCrossRef J. Zhang, X. Jin, P.I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, J.P. Claverie, Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 10, 4496–4503 (2016)PubMedCrossRef
312.
Zurück zum Zitat S.S. Yi, X.B. Zhang, B.R. Wulan, J.M. Yan, Q. Jiang, Non-noble metals applied to solar water splitting. Energy Environ. Sci. 11, 3128–3156 (2018)CrossRef S.S. Yi, X.B. Zhang, B.R. Wulan, J.M. Yan, Q. Jiang, Non-noble metals applied to solar water splitting. Energy Environ. Sci. 11, 3128–3156 (2018)CrossRef
313.
Zurück zum Zitat P. Zhang, T. Wang, J. Gong, Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27, 5328–5342 (2015)PubMedCrossRef P. Zhang, T. Wang, J. Gong, Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27, 5328–5342 (2015)PubMedCrossRef
314.
Zurück zum Zitat S.C. Warren, E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133–5146 (2012)CrossRef S.C. Warren, E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133–5146 (2012)CrossRef
315.
Zurück zum Zitat H. Sheng, J. Wang, J. Huang, Z. Li, G. Ren, L. Zhang, L. Yu, M. Zhao, X. Li, G. Li, N. Wang, C. Shen, G. Lu, Strong synergy between gold nanoparticles and cobalt porphyrin induces highly efficient photocatalytic hydrogen evolution. Nat. Commun. 14, 1528 (2023)PubMedPubMedCentralCrossRef H. Sheng, J. Wang, J. Huang, Z. Li, G. Ren, L. Zhang, L. Yu, M. Zhao, X. Li, G. Li, N. Wang, C. Shen, G. Lu, Strong synergy between gold nanoparticles and cobalt porphyrin induces highly efficient photocatalytic hydrogen evolution. Nat. Commun. 14, 1528 (2023)PubMedPubMedCentralCrossRef
316.
Zurück zum Zitat M. Herran, S. Juergensen, M. Kessens, D. Hoeing, A. Köppen, A. Sousa-Castillo, W.J. Parak, H. Lange, S. Reich, F. Schulz, E. Cortés, Plasmonic bimetallic two-dimensional supercrystals for H2 generation. Nat. Catal. 6, 1205–1214 (2023)CrossRef M. Herran, S. Juergensen, M. Kessens, D. Hoeing, A. Köppen, A. Sousa-Castillo, W.J. Parak, H. Lange, S. Reich, F. Schulz, E. Cortés, Plasmonic bimetallic two-dimensional supercrystals for H2 generation. Nat. Catal. 6, 1205–1214 (2023)CrossRef
317.
Zurück zum Zitat Y. Zhang, W. Guo, Y. Zhang, W.D. Wei, Plasmonic photoelectrochemistry: in view of hot carriers. Adv. Mater. 2006654 (2021) Y. Zhang, W. Guo, Y. Zhang, W.D. Wei, Plasmonic photoelectrochemistry: in view of hot carriers. Adv. Mater. 2006654 (2021)
318.
Zurück zum Zitat G. Liu, K. Du, J. Xu, G. Chen, M. Gu, C. Yang, K. Wang, H. Jakobsen, Plasmon-dominated photoelectrodes for solar water splitting. J. Mater. Chem. A 5, 4233–4253 (2017)CrossRef G. Liu, K. Du, J. Xu, G. Chen, M. Gu, C. Yang, K. Wang, H. Jakobsen, Plasmon-dominated photoelectrodes for solar water splitting. J. Mater. Chem. A 5, 4233–4253 (2017)CrossRef
319.
Zurück zum Zitat D.V. Dao, T.T.D. Nguyen, P. Uthirakumar, Y.-H. Cho, G.C. Kim, J.K. Yang, D.T. Tran, T.D. Le, H. Choi, H.Y. Kim, Y.T. Yu, I.H. Lee, Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement. Appl. Catal. B 286, 119947 (2021)CrossRef D.V. Dao, T.T.D. Nguyen, P. Uthirakumar, Y.-H. Cho, G.C. Kim, J.K. Yang, D.T. Tran, T.D. Le, H. Choi, H.Y. Kim, Y.T. Yu, I.H. Lee, Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement. Appl. Catal. B 286, 119947 (2021)CrossRef
320.
Zurück zum Zitat J.L. Yang, Y.L. He, H. Ren, H.L. Zhong, J.S. Lin, W.-M. Yang, M.D. Li, Z.L. Yang, H. Zhang, Z.Q. Tian, J.F. Li, Boosting photocatalytic hydrogen evolution reaction using dual plasmonic antennas. ACS Catal. 11, 5047–5053 (2021)CrossRef J.L. Yang, Y.L. He, H. Ren, H.L. Zhong, J.S. Lin, W.-M. Yang, M.D. Li, Z.L. Yang, H. Zhang, Z.Q. Tian, J.F. Li, Boosting photocatalytic hydrogen evolution reaction using dual plasmonic antennas. ACS Catal. 11, 5047–5053 (2021)CrossRef
321.
Zurück zum Zitat Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I.D. Sharp, A. Kudo, T. Yamada, K. Domen, Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. Nat. Mater. 15, 611–615 (2016)PubMedCrossRef Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I.D. Sharp, A. Kudo, T. Yamada, K. Domen, Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. Nat. Mater. 15, 611–615 (2016)PubMedCrossRef
322.
Zurück zum Zitat S. Wang, Y. Gao, S. Miao, T. Liu, L. Mu, R. Li, F. Fan, C. Li, Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 139, 11771–11778 (2017)PubMedCrossRef S. Wang, Y. Gao, S. Miao, T. Liu, L. Mu, R. Li, F. Fan, C. Li, Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 139, 11771–11778 (2017)PubMedCrossRef
323.
Zurück zum Zitat Z.W. Seh, S. Liu, M. Low, S.Y. Zhang, Z. Liu, A. Mlayah, M.Y. Han, Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 24, 2310–2314 (2012)PubMedCrossRef Z.W. Seh, S. Liu, M. Low, S.Y. Zhang, Z. Liu, A. Mlayah, M.Y. Han, Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 24, 2310–2314 (2012)PubMedCrossRef
324.
Zurück zum Zitat K. Song, H. Lee, M. Lee, J.Y. Park, Plasmonic hot hole-driven water splitting on Au nanoprisms/P-Type GaN. ACS Energy Lett. 1333–1339 (2021) K. Song, H. Lee, M. Lee, J.Y. Park, Plasmonic hot hole-driven water splitting on Au nanoprisms/P-Type GaN. ACS Energy Lett. 1333–1339 (2021)
325.
Zurück zum Zitat Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 13, 14–20 (2013)PubMedCrossRef Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 13, 14–20 (2013)PubMedCrossRef
326.
Zurück zum Zitat X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, H. Misawa, Enhanced water splitting under modal strong coupling conditions. Nat. Nanotechnol. 13, 953–958 (2018)PubMedCrossRef X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, H. Misawa, Enhanced water splitting under modal strong coupling conditions. Nat. Nanotechnol. 13, 953–958 (2018)PubMedCrossRef
327.
Zurück zum Zitat R. Peng, X. Ma, Z.D. Hood, A. Boulesbaa, A.A. Puretzky, J. Tong, Z. Wu, Synergizing plasmonic Au nanocages with 2D MoS2 nanosheets for significant enhancement in photocatalytic hydrogen evolution. J. Mater. Chem. A 11, 16714–16723 (2023)CrossRef R. Peng, X. Ma, Z.D. Hood, A. Boulesbaa, A.A. Puretzky, J. Tong, Z. Wu, Synergizing plasmonic Au nanocages with 2D MoS2 nanosheets for significant enhancement in photocatalytic hydrogen evolution. J. Mater. Chem. A 11, 16714–16723 (2023)CrossRef
328.
Zurück zum Zitat P. Verma, Y. Kuwahara, K. Mori, R. Watanabe, C. Fukuhara, H. Yamashita, Plasmonic heterojunction photocatalysts for hydrogen generation: a mini-review. Energy Fuels 37, 17652–17666 (2023)CrossRef P. Verma, Y. Kuwahara, K. Mori, R. Watanabe, C. Fukuhara, H. Yamashita, Plasmonic heterojunction photocatalysts for hydrogen generation: a mini-review. Energy Fuels 37, 17652–17666 (2023)CrossRef
329.
Zurück zum Zitat G. Yu, J. Qian, P. Zhang, B. Zhang, W. Zhang, W. Yan, G. Liu, Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 10 (2019) G. Yu, J. Qian, P. Zhang, B. Zhang, W. Zhang, W. Yan, G. Liu, Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 10 (2019)
330.
Zurück zum Zitat N. Keller, J. Ivanez, J. Highfield, A.M. Ruppert, Photo-/thermal synergies in heterogeneous catalysis: towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Appl. Catal. B 296, 120320 (2021)CrossRef N. Keller, J. Ivanez, J. Highfield, A.M. Ruppert, Photo-/thermal synergies in heterogeneous catalysis: towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Appl. Catal. B 296, 120320 (2021)CrossRef
331.
Zurück zum Zitat K. Czelej, J.C. Colmenares, K. Jabłczyńska, K. Ćwieka, Ł. Werner, L. Gradoń, Sustainable hydrogen production by plasmonic thermophotocatalysis. Catal. Today (2021) K. Czelej, J.C. Colmenares, K. Jabłczyńska, K. Ćwieka, Ł. Werner, L. Gradoń, Sustainable hydrogen production by plasmonic thermophotocatalysis. Catal. Today (2021)
332.
Zurück zum Zitat S. Guo, X. Li, J. Li, B. Wei, Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 12 (2021) S. Guo, X. Li, J. Li, B. Wei, Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 12 (2021)
333.
Zurück zum Zitat L. Ma, B. Luo, J. Geng, Z. Huang, L. Guo, Efficient photothermocatalytic hydrogen production performance over a graphene-titanium dioxide hybrid nanomaterial. Int. J. Hydrogen Energy 46, 2871–2877 (2021)CrossRef L. Ma, B. Luo, J. Geng, Z. Huang, L. Guo, Efficient photothermocatalytic hydrogen production performance over a graphene-titanium dioxide hybrid nanomaterial. Int. J. Hydrogen Energy 46, 2871–2877 (2021)CrossRef
334.
Zurück zum Zitat Q. Li, G. Lu, Significant effect of pressure on the H2 releasing from photothermal-catalytic water steam splitting over TiSi2 and Pt/TiO2. Catal. Lett. 125, 376–379 (2008)CrossRef Q. Li, G. Lu, Significant effect of pressure on the H2 releasing from photothermal-catalytic water steam splitting over TiSi2 and Pt/TiO2. Catal. Lett. 125, 376–379 (2008)CrossRef
335.
Zurück zum Zitat T.G.U. Ghobadi, A. Ghobadi, E. Ozbay, F. Karadas, Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting. Chemphotochem 2, 161–182 (2018)CrossRef T.G.U. Ghobadi, A. Ghobadi, E. Ozbay, F. Karadas, Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting. Chemphotochem 2, 161–182 (2018)CrossRef
336.
Zurück zum Zitat Z.J. Wang, H. Song, H. Liu, J. Ye, Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. 59, 8016–8035 (2020)CrossRef Z.J. Wang, H. Song, H. Liu, J. Ye, Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew. Chem. 59, 8016–8035 (2020)CrossRef
337.
338.
Zurück zum Zitat M. Dhiman, Plasmonic nanocatalysis for solar energy harvesting and sustainable chemistry. J. Mater. Chem. A 8, 10074–10095 (2020)CrossRef M. Dhiman, Plasmonic nanocatalysis for solar energy harvesting and sustainable chemistry. J. Mater. Chem. A 8, 10074–10095 (2020)CrossRef
339.
Zurück zum Zitat T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637–638 (1979)CrossRef T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637–638 (1979)CrossRef
340.
Zurück zum Zitat S. Yu, A.J. Wilson, G. Kumari, X. Zhang, P.K. Jain, Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2, 2058–2070 (2017)CrossRef S. Yu, A.J. Wilson, G. Kumari, X. Zhang, P.K. Jain, Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2, 2058–2070 (2017)CrossRef
341.
Zurück zum Zitat U. Ulmer, T. Dingle, P.N. Duchesne, R.H. Morris, A. Tavasoli, T. Wood, G.A. Ozin, Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019)PubMedPubMedCentralCrossRef U. Ulmer, T. Dingle, P.N. Duchesne, R.H. Morris, A. Tavasoli, T. Wood, G.A. Ozin, Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019)PubMedPubMedCentralCrossRef
342.
Zurück zum Zitat X. Zhang, X. Li, M.E. Reish, D. Zhang, N.Q. Su, Y. Gutierrez, F. Moreno, W. Yang, H.O. Everitt, J. Liu, Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett. 18, 1714–1723 (2018)PubMedCrossRef X. Zhang, X. Li, M.E. Reish, D. Zhang, N.Q. Su, Y. Gutierrez, F. Moreno, W. Yang, H.O. Everitt, J. Liu, Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett. 18, 1714–1723 (2018)PubMedCrossRef
343.
Zurück zum Zitat Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, J. Ye, Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew. Chem. 54, 841–845 (2015)CrossRef Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, J. Ye, Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew. Chem. 54, 841–845 (2015)CrossRef
344.
Zurück zum Zitat M. Dhiman, A. Maity, A. Das, R. Belgamwar, B. Chalke, Y. Lee, K. Sim, J.M. Nam, V. Polshettiwar, Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion. Chem. Sci. 10, 6594–6603 (2019)PubMedPubMedCentralCrossRef M. Dhiman, A. Maity, A. Das, R. Belgamwar, B. Chalke, Y. Lee, K. Sim, J.M. Nam, V. Polshettiwar, Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion. Chem. Sci. 10, 6594–6603 (2019)PubMedPubMedCentralCrossRef
345.
Zurück zum Zitat X. Zhang, X. Li, D. Zhang, N.Q. Su, W. Yang, H.O. Everitt, J. Liu, Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017)PubMedPubMedCentralCrossRef X. Zhang, X. Li, D. Zhang, N.Q. Su, W. Yang, H.O. Everitt, J. Liu, Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017)PubMedPubMedCentralCrossRef
346.
Zurück zum Zitat J.S. DuChene, G. Tagliabue, A.J. Welch, W.H. Cheng, H.A. Atwater, Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018)PubMedCrossRef J.S. DuChene, G. Tagliabue, A.J. Welch, W.H. Cheng, H.A. Atwater, Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018)PubMedCrossRef
347.
Zurück zum Zitat G. Kumari, X. Zhang, D. Devasia, J. Heo, P.K. Jain, Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano 12, 8330–8340 (2018)PubMedCrossRef G. Kumari, X. Zhang, D. Devasia, J. Heo, P.K. Jain, Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano 12, 8330–8340 (2018)PubMedCrossRef
348.
Zurück zum Zitat W.N. Wang, W.J. An, B. Ramalingam, S. Mukherjee, D.M. Niedzwiedzki, S. Gangopadhyay, P. Biswas, Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 134, 11276–11281 (2012)PubMedCrossRef W.N. Wang, W.J. An, B. Ramalingam, S. Mukherjee, D.M. Niedzwiedzki, S. Gangopadhyay, P. Biswas, Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 134, 11276–11281 (2012)PubMedCrossRef
349.
Zurück zum Zitat H. Liu, X. Meng, T.D. Dao, H. Zhang, P. Li, K. Chang, T. Wang, M. Li, T. Nagao, J. Ye, Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angew. Chem. Int. Ed. 54, 11545–11549 (2015)CrossRef H. Liu, X. Meng, T.D. Dao, H. Zhang, P. Li, K. Chang, T. Wang, M. Li, T. Nagao, J. Ye, Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angew. Chem. Int. Ed. 54, 11545–11549 (2015)CrossRef
350.
Zurück zum Zitat S. Neatu, J.A. Macia-Agullo, P. Concepcion, H. Garcia, Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 136, 15969–15976 (2014)PubMedCrossRef S. Neatu, J.A. Macia-Agullo, P. Concepcion, H. Garcia, Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 136, 15969–15976 (2014)PubMedCrossRef
351.
Zurück zum Zitat R. Li, W.H. Cheng, M.H. Richter, J.S. DuChene, W. Tian, C. Li, H.A. Atwater, Unassisted highly selective gas-phase CO2 reduction with a plasmonic Au/p-GaN photocatalyst using H2O as an electron donor. ACS Energy Lett. 6, 1849–1856 (2021)CrossRef R. Li, W.H. Cheng, M.H. Richter, J.S. DuChene, W. Tian, C. Li, H.A. Atwater, Unassisted highly selective gas-phase CO2 reduction with a plasmonic Au/p-GaN photocatalyst using H2O as an electron donor. ACS Energy Lett. 6, 1849–1856 (2021)CrossRef
352.
Zurück zum Zitat J. Zhao, B. Liu, L. Meng, S. He, R. Yuan, Y. Hou, Z. Ding, H. Lin, Z. Zhang, X. Wang, J. Long, Plasmonic control of solar-driven CO2 conversion at the metal/ZnO interfaces. Appl. Catal. B 256, 117823 (2019)CrossRef J. Zhao, B. Liu, L. Meng, S. He, R. Yuan, Y. Hou, Z. Ding, H. Lin, Z. Zhang, X. Wang, J. Long, Plasmonic control of solar-driven CO2 conversion at the metal/ZnO interfaces. Appl. Catal. B 256, 117823 (2019)CrossRef
353.
Zurück zum Zitat X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka, J. Ye, Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. 53, 11478–11482 (2014)CrossRef X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka, J. Ye, Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. 53, 11478–11482 (2014)CrossRef
354.
Zurück zum Zitat M. Ghoussoub, M. Xia, P.N. Duchesne, D. Segal, G. Ozin, Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 12, 1122–1142 (2019)CrossRef M. Ghoussoub, M. Xia, P.N. Duchesne, D. Segal, G. Ozin, Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 12, 1122–1142 (2019)CrossRef
355.
Zurück zum Zitat Y. Li, J. Hao, H. Song, F. Zhang, X. Bai, X. Meng, H. Zhang, S. Wang, Y. Hu, J. Ye, Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 10, 2359 (2019)PubMedPubMedCentralCrossRef Y. Li, J. Hao, H. Song, F. Zhang, X. Bai, X. Meng, H. Zhang, S. Wang, Y. Hu, J. Ye, Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 10, 2359 (2019)PubMedPubMedCentralCrossRef
356.
Zurück zum Zitat J. Jia, H. Wang, Z. Lu, P.G. O’Brien, M. Ghoussoub, P. Duchesne, Z. Zheng, P. Li, Q. Qiao, L. Wang, A. Gu, A.A. Jelle, Y. Dong, Q. Wang, K.K. Ghuman, T. Wood, C. Qian, Y. Shao, C. Qiu, M. Ye, Y. Zhu, Z.H. Lu, P. Zhang, A.S. Helmy, C.V. Singh, N.P. Kherani, D.D. Perovic, G.A. Ozin, Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 4, 1700252 (2017)CrossRef J. Jia, H. Wang, Z. Lu, P.G. O’Brien, M. Ghoussoub, P. Duchesne, Z. Zheng, P. Li, Q. Qiao, L. Wang, A. Gu, A.A. Jelle, Y. Dong, Q. Wang, K.K. Ghuman, T. Wood, C. Qian, Y. Shao, C. Qiu, M. Ye, Y. Zhu, Z.H. Lu, P. Zhang, A.S. Helmy, C.V. Singh, N.P. Kherani, D.D. Perovic, G.A. Ozin, Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 4, 1700252 (2017)CrossRef
357.
Zurück zum Zitat M. Cai, Z. Wu, Z. Li, L. Wang, W. Sun, A.A. Tountas, C. Li, S. Wang, K. Feng, A.-B. Xu, S. Tang, A. Tavasoli, M. Peng, W. Liu, A.S. Helmy, L. He, G.A. Ozin, X. Zhang, Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 6, 807–814 (2021)CrossRef M. Cai, Z. Wu, Z. Li, L. Wang, W. Sun, A.A. Tountas, C. Li, S. Wang, K. Feng, A.-B. Xu, S. Tang, A. Tavasoli, M. Peng, W. Liu, A.S. Helmy, L. He, G.A. Ozin, X. Zhang, Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 6, 807–814 (2021)CrossRef
358.
Zurück zum Zitat M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)PubMedCrossRef M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)PubMedCrossRef
359.
Zurück zum Zitat E.C. Edited by Pedro H.C. Camargo, Plasmonic Catalysis from Fundamentals to Applications, © 2021 WILEY-VCH GmbH (2021) E.C. Edited by Pedro H.C. Camargo, Plasmonic Catalysis from Fundamentals to Applications, © 2021 WILEY-VCH GmbH (2021)
360.
Zurück zum Zitat B.M. Comer, P. Fuentes, C.O. Dimkpa, Y.H. Liu, C.A. Fernandez, P. Arora, M. Realff, U. Singh, M.C. Hatzell, A.J. Medford, Prospects and challenges for solar fertilizers. Joule 3, 1578–1605 (2019)CrossRef B.M. Comer, P. Fuentes, C.O. Dimkpa, Y.H. Liu, C.A. Fernandez, P. Arora, M. Realff, U. Singh, M.C. Hatzell, A.J. Medford, Prospects and challenges for solar fertilizers. Joule 3, 1578–1605 (2019)CrossRef
361.
Zurück zum Zitat B. Puértolas, M. Comesaña-Hermo, L.V. Besteiro, M. Vázquez‐González, M.A. Correa-Duarte, challenges and opportunities for renewable ammonia production via plasmon-assisted photocatalysis. Adv. Energy Mater. 12 (2022) B. Puértolas, M. Comesaña-Hermo, L.V. Besteiro, M. Vázquez‐González, M.A. Correa-Duarte, challenges and opportunities for renewable ammonia production via plasmon-assisted photocatalysis. Adv. Energy Mater. 12 (2022)
362.
Zurück zum Zitat J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Beyond fossil fuel-driven nitrogen transformations. Science 360 (2018) J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Beyond fossil fuel-driven nitrogen transformations. Science 360 (2018)
363.
Zurück zum Zitat R. Schlogl, Catalytic synthesis of ammonia-a “never-ending story”? Angew. Chem. 42, 2004–2008 (2003)CrossRef R. Schlogl, Catalytic synthesis of ammonia-a “never-ending story”? Angew. Chem. 42, 2004–2008 (2003)CrossRef
364.
Zurück zum Zitat S.D. Minteer, P. Christopher, S. Linic, Recent developments in nitrogen reduction catalysts: a virtual issue. ACS Energy Lett. 4, 163–166 (2018)CrossRef S.D. Minteer, P. Christopher, S. Linic, Recent developments in nitrogen reduction catalysts: a virtual issue. ACS Energy Lett. 4, 163–166 (2018)CrossRef
365.
Zurück zum Zitat L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C.T. Maravelias, G.A. Ozin, Greening ammonia toward the solar ammonia refinery. Joule 2, 1055–1074 (2018)CrossRef L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C.T. Maravelias, G.A. Ozin, Greening ammonia toward the solar ammonia refinery. Joule 2, 1055–1074 (2018)CrossRef
366.
Zurück zum Zitat R. de Richter, T. Ming, P. Davies, W. Liu, S. Caillol, Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis.Progr. Energy Combustion Sci. 60, 68–96 (2017) R. de Richter, T. Ming, P. Davies, W. Liu, S. Caillol, Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis.Progr. Energy Combustion Sci. 60, 68–96 (2017)
367.
Zurück zum Zitat J. Yang, Y. Guo, W. Lu, R. Jiang, J. Wang, Emerging applications of plasmons in driving CO2 reduction and N2 fixation. Adv. Mater. 30, e1802227 (2018)PubMedCrossRef J. Yang, Y. Guo, W. Lu, R. Jiang, J. Wang, Emerging applications of plasmons in driving CO2 reduction and N2 fixation. Adv. Mater. 30, e1802227 (2018)PubMedCrossRef
368.
Zurück zum Zitat E. Cortes, L.V. Besteiro, A. Alabastri, A. Baldi, G. Tagliabue, A. Demetriadou, P. Narang, Challenges in plasmonic catalysis. ACS Nano (2020) E. Cortes, L.V. Besteiro, A. Alabastri, A. Baldi, G. Tagliabue, A. Demetriadou, P. Narang, Challenges in plasmonic catalysis. ACS Nano (2020)
369.
Zurück zum Zitat C. Li, T. Wang, Z.J. Zhao, W. Yang, J.F. Li, A. Li, Z. Yang, G.A. Ozin, J. Gong, Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. Int. Ed. 57, 5278–5282 (2018)CrossRef C. Li, T. Wang, Z.J. Zhao, W. Yang, J.F. Li, A. Li, Z. Yang, G.A. Ozin, J. Gong, Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. Int. Ed. 57, 5278–5282 (2018)CrossRef
370.
Zurück zum Zitat T. Oshikiri, K. Ueno, H. Misawa, Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. 53, 9802–9805 (2014)CrossRef T. Oshikiri, K. Ueno, H. Misawa, Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. 53, 9802–9805 (2014)CrossRef
371.
Zurück zum Zitat T. Oshikiri, K. Ueno, H. Misawa, Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. 55, 3942–3946 (2016)CrossRef T. Oshikiri, K. Ueno, H. Misawa, Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. 55, 3942–3946 (2016)CrossRef
372.
Zurück zum Zitat M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang, D.R. MacFarlane, Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016)PubMedPubMedCentralCrossRef M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang, D.R. MacFarlane, Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016)PubMedPubMedCentralCrossRef
373.
Zurück zum Zitat X. Li, X. Zhang, H.O. Everitt, J. Liu, Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 19, 1706–1711 (2019)PubMedCrossRef X. Li, X. Zhang, H.O. Everitt, J. Liu, Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 19, 1706–1711 (2019)PubMedCrossRef
374.
Zurück zum Zitat C. Mao, H. Li, H. Gu, J. Wang, Y. Zou, G. Qi, J. Xu, F. Deng, W. Shen, J. Li, S. Liu, J. Zhao, L. Zhang, Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 5, 2702–2717 (2019)CrossRef C. Mao, H. Li, H. Gu, J. Wang, Y. Zou, G. Qi, J. Xu, F. Deng, W. Shen, J. Li, S. Liu, J. Zhao, L. Zhang, Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 5, 2702–2717 (2019)CrossRef
375.
Zurück zum Zitat C. Mao, L. Yu, J. Li, J. Zhao, L. Zhang, Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Appl. Catal. B 224, 612–620 (2018)CrossRef C. Mao, L. Yu, J. Li, J. Zhao, L. Zhang, Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Appl. Catal. B 224, 612–620 (2018)CrossRef
376.
Zurück zum Zitat S. Zhang, D. Chen, P. Chen, R. Zhang, Y. Hou, Y. Guo, P. Li, X. Liang, T. Xing, J. Chen, Y. Zhao, Z. Huang, D. Lei, C. Zhi, Concurrent mechanisms of hot electrons and interfacial water molecule ordering in plasmon-enhanced nitrogen fixation. Adv. Mater. e2310776 (2024) S. Zhang, D. Chen, P. Chen, R. Zhang, Y. Hou, Y. Guo, P. Li, X. Liang, T. Xing, J. Chen, Y. Zhao, Z. Huang, D. Lei, C. Zhi, Concurrent mechanisms of hot electrons and interfacial water molecule ordering in plasmon-enhanced nitrogen fixation. Adv. Mater. e2310776 (2024)
377.
Zurück zum Zitat Y. Yang, H. Jia, N. Hu, M. Zhao, J. Li, W. Ni, C.Y. Zhang, Construction of gold/rhodium freestanding superstructures as antenna-reactor photocatalysts for plasmon-driven nitrogen fixation. J. Am. Chem. Soc. 146, 7734–7742 (2024)PubMedCrossRef Y. Yang, H. Jia, N. Hu, M. Zhao, J. Li, W. Ni, C.Y. Zhang, Construction of gold/rhodium freestanding superstructures as antenna-reactor photocatalysts for plasmon-driven nitrogen fixation. J. Am. Chem. Soc. 146, 7734–7742 (2024)PubMedCrossRef
378.
Zurück zum Zitat S.K. Boong, C. Chong, J.K. Lee, Z.Z. Ang, H. Li, H.K. Lee, Superlattice-based plasmonic catalysis: concentrating light at the nanoscale to drive efficient nitrogen-to-ammonia fixation at ambient conditions. Angew. Chem. 62, e202216562 (2023)CrossRef S.K. Boong, C. Chong, J.K. Lee, Z.Z. Ang, H. Li, H.K. Lee, Superlattice-based plasmonic catalysis: concentrating light at the nanoscale to drive efficient nitrogen-to-ammonia fixation at ambient conditions. Angew. Chem. 62, e202216562 (2023)CrossRef
379.
Zurück zum Zitat X. Li, B. Sun, Q. Chen, H.K. Lee, B. Shi, H. Ren, H. Li, Z. Ma, M. Fu, Integrating photothermal and plasmonic catalysis induced by near-infrared light for efficient reduction of 4-nitrophenol. J. Colloid Interface Sci. 660, 726–734 (2024)PubMedCrossRef X. Li, B. Sun, Q. Chen, H.K. Lee, B. Shi, H. Ren, H. Li, Z. Ma, M. Fu, Integrating photothermal and plasmonic catalysis induced by near-infrared light for efficient reduction of 4-nitrophenol. J. Colloid Interface Sci. 660, 726–734 (2024)PubMedCrossRef
380.
Zurück zum Zitat Y. Feng, L. Dai, Z. Wang, Y. Peng, E. Duan, Y. Liu, L. Jing, X. Wang, A. Rastegarpanah, H. Dai, J. Deng, Photothermal synergistic effect of Pt1/CuO-CeO2 single-atom catalysts significantly improving toluene removal. Environ. Sci. Technol. 56, 8722–8732 (2022)PubMedCrossRef Y. Feng, L. Dai, Z. Wang, Y. Peng, E. Duan, Y. Liu, L. Jing, X. Wang, A. Rastegarpanah, H. Dai, J. Deng, Photothermal synergistic effect of Pt1/CuO-CeO2 single-atom catalysts significantly improving toluene removal. Environ. Sci. Technol. 56, 8722–8732 (2022)PubMedCrossRef
381.
Zurück zum Zitat Z. Zhang, A. Zhao, F. Wang, J. Ren, X. Qu, Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters. Chem. Commun. 52, 5550–5553 (2016)CrossRef Z. Zhang, A. Zhao, F. Wang, J. Ren, X. Qu, Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters. Chem. Commun. 52, 5550–5553 (2016)CrossRef
382.
Zurück zum Zitat Y. Deng, L. Tang, C. Feng, G. Zeng, J. Wang, Y. Zhou, Y. Liu, B. Peng, H. Feng, Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. J. Hazard. Mater. 344, 758–769 (2018)PubMedCrossRef Y. Deng, L. Tang, C. Feng, G. Zeng, J. Wang, Y. Zhou, Y. Liu, B. Peng, H. Feng, Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. J. Hazard. Mater. 344, 758–769 (2018)PubMedCrossRef
383.
Zurück zum Zitat J.W. Hong, D.H. Wi, S.U. Lee, S.W. Han, Metal-semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. J. Am. Chem. Soc. 138, 15766–15773 (2016)PubMedCrossRef J.W. Hong, D.H. Wi, S.U. Lee, S.W. Han, Metal-semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. J. Am. Chem. Soc. 138, 15766–15773 (2016)PubMedCrossRef
384.
Zurück zum Zitat M. Wang, M. Ye, J. Iocozzia, C. Lin, Z. Lin, Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 3, 1600024 (2016)CrossRef M. Wang, M. Ye, J. Iocozzia, C. Lin, Z. Lin, Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 3, 1600024 (2016)CrossRef
385.
Zurück zum Zitat Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458–465 (2014)PubMedCrossRef Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458–465 (2014)PubMedCrossRef
386.
Zurück zum Zitat C. Chen, L. Zhou, J. Yu, Y. Wang, S. Nie, S. Zhu, J. Zhu, Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 51, 451–456 (2018)CrossRef C. Chen, L. Zhou, J. Yu, Y. Wang, S. Nie, S. Zhu, J. Zhu, Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 51, 451–456 (2018)CrossRef
387.
Zurück zum Zitat S.W. Verbruggen, M. Keulemans, B. Goris, N. Blommaerts, S. Bals, J.A. Martens, S. Lenaerts, Plasmonic ‘rainbow’ photocatalyst with broadband solar light response for environmental applications. Appl. Catal. B 188, 147–153 (2016)CrossRef S.W. Verbruggen, M. Keulemans, B. Goris, N. Blommaerts, S. Bals, J.A. Martens, S. Lenaerts, Plasmonic ‘rainbow’ photocatalyst with broadband solar light response for environmental applications. Appl. Catal. B 188, 147–153 (2016)CrossRef
388.
Zurück zum Zitat J. Huang, Y. He, L. Wang, Y. Huang, B. Jiang, Bifunctional Au@TiO2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Convers. Manage. 132, 452–459 (2017)CrossRef J. Huang, Y. He, L. Wang, Y. Huang, B. Jiang, Bifunctional Au@TiO2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Convers. Manage. 132, 452–459 (2017)CrossRef
389.
Zurück zum Zitat K.Y. Tang, J.X. Chen, E.D.R. Legaspi, C. Owh, M. Lin, I.S.Y. Tee, D. Kai, X.J. Loh, Z. Li, M.D. Regulacio, E. Ye, Gold-decorated TiO2 nanofibrous hybrid for improved solar-driven photocatalytic pollutant degradation. Chemosphere 265, 129114 (2021)PubMedCrossRef K.Y. Tang, J.X. Chen, E.D.R. Legaspi, C. Owh, M. Lin, I.S.Y. Tee, D. Kai, X.J. Loh, Z. Li, M.D. Regulacio, E. Ye, Gold-decorated TiO2 nanofibrous hybrid for improved solar-driven photocatalytic pollutant degradation. Chemosphere 265, 129114 (2021)PubMedCrossRef
390.
Zurück zum Zitat H.A. Ghaly, A.S. El-Kalliny, T.A. Gad-Allah, N.E.A. Abd El-Sattar, E.R. Souaya, Stable plasmonic Ag/AgCl-polyaniline photoactive composite for degradation of organic contaminants under solar light. RSC Adv. 7, 12726–12736 (2017) H.A. Ghaly, A.S. El-Kalliny, T.A. Gad-Allah, N.E.A. Abd El-Sattar, E.R. Souaya, Stable plasmonic Ag/AgCl-polyaniline photoactive composite for degradation of organic contaminants under solar light. RSC Adv. 7, 12726–12736 (2017)
391.
Zurück zum Zitat C. Yu, W. Zhou, L. Zhu, G. Li, K. Yang, R. Jin, Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. Appl. Catal. B 184, 1–11 (2016)CrossRef C. Yu, W. Zhou, L. Zhu, G. Li, K. Yang, R. Jin, Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. Appl. Catal. B 184, 1–11 (2016)CrossRef
392.
393.
Zurück zum Zitat C. Zhan, B.W. Liu, Y.F. Huang, S. Hu, B. Ren, M. Moskovits, Z.Q. Tian, Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 10, 2671 (2019)PubMedPubMedCentralCrossRef C. Zhan, B.W. Liu, Y.F. Huang, S. Hu, B. Ren, M. Moskovits, Z.Q. Tian, Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 10, 2671 (2019)PubMedPubMedCentralCrossRef
394.
Zurück zum Zitat X. Li, H.O. Everitt, J. Liu, Synergy between thermal and nonthermal effects in plasmonic photocatalysis. Nano Res. 13, 1268–1280 (2020)CrossRef X. Li, H.O. Everitt, J. Liu, Synergy between thermal and nonthermal effects in plasmonic photocatalysis. Nano Res. 13, 1268–1280 (2020)CrossRef
395.
Zurück zum Zitat H. Wei, S.K. Loeb, N.J. Halas, J.H. Kim, Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods. Proc. Natl. Acad. Sci. 117, 15473–15481 (2020)PubMedPubMedCentralCrossRef H. Wei, S.K. Loeb, N.J. Halas, J.H. Kim, Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods. Proc. Natl. Acad. Sci. 117, 15473–15481 (2020)PubMedPubMedCentralCrossRef
396.
Zurück zum Zitat S.C. Cai, J.J. Li, E.Q. Yu, X. Chen, J. Chen, H.P. Jia, Strong photothermal effect of plasmonic Pt nanoparticles for efficient degradation of volatile organic compounds under solar light irradiation. ACS Appl. Nano Mater. 1, 6368–6377 (2018)CrossRef S.C. Cai, J.J. Li, E.Q. Yu, X. Chen, J. Chen, H.P. Jia, Strong photothermal effect of plasmonic Pt nanoparticles for efficient degradation of volatile organic compounds under solar light irradiation. ACS Appl. Nano Mater. 1, 6368–6377 (2018)CrossRef
397.
Zurück zum Zitat X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402–434 (2017)CrossRef X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402–434 (2017)CrossRef
398.
Zurück zum Zitat I. Jeon, E.C. Ryberg, P.J.J. Alvarez, J.H. Kim, Technology assessment of solar disinfection for drinking water treatment. Nat. Sustain. 5, 801–808 (2022)CrossRef I. Jeon, E.C. Ryberg, P.J.J. Alvarez, J.H. Kim, Technology assessment of solar disinfection for drinking water treatment. Nat. Sustain. 5, 801–808 (2022)CrossRef
399.
Zurück zum Zitat P.J.J. Alvarez, C.K. Chan, M. Elimelech, N.J. Halas, D. Villagran, Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018)PubMedCrossRef P.J.J. Alvarez, C.K. Chan, M. Elimelech, N.J. Halas, D. Villagran, Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018)PubMedCrossRef
400.
Zurück zum Zitat J. Gamage McEvoy, Z. Zhang, Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J. Photochem. Photobiol. C: Photochem. Rev. 19, 62–75 (2014) J. Gamage McEvoy, Z. Zhang, Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J. Photochem. Photobiol. C: Photochem. Rev. 19, 62–75 (2014)
401.
Zurück zum Zitat L. Wang, Y. Feng, K. Wang, G. Liu, Solar water sterilization enabled by photothermal nanomaterials. Nano Energy 87, 106158 (2021)CrossRef L. Wang, Y. Feng, K. Wang, G. Liu, Solar water sterilization enabled by photothermal nanomaterials. Nano Energy 87, 106158 (2021)CrossRef
402.
Zurück zum Zitat O. Neumann, C. Feronti, A.D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, N.J. Halas, Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 110, 11677–11681 (2013)PubMedPubMedCentralCrossRef O. Neumann, C. Feronti, A.D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, N.J. Halas, Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 110, 11677–11681 (2013)PubMedPubMedCentralCrossRef
403.
Zurück zum Zitat A. Kulkarni, A. Kapley, R.S. Dhodapkar, P. Nagababu, S. Rayalu, Plasmonics driven engineered pasteurizers for solar water disinfection (SWADIS). J. Hazard. Mater. 369, 474–482 (2019)PubMedCrossRef A. Kulkarni, A. Kapley, R.S. Dhodapkar, P. Nagababu, S. Rayalu, Plasmonics driven engineered pasteurizers for solar water disinfection (SWADIS). J. Hazard. Mater. 369, 474–482 (2019)PubMedCrossRef
404.
Zurück zum Zitat F. Brasili, A. Capocefalo, D. Palmieri, F. Capitani, E. Chiessi, G. Paradossi, F. Bordi, F. Domenici, Assembling patchy plasmonic nanoparticles with aggregation-dependent antibacterial activity. J. Colloid Interface Sci. 580, 419–428 (2020)PubMedCrossRef F. Brasili, A. Capocefalo, D. Palmieri, F. Capitani, E. Chiessi, G. Paradossi, F. Bordi, F. Domenici, Assembling patchy plasmonic nanoparticles with aggregation-dependent antibacterial activity. J. Colloid Interface Sci. 580, 419–428 (2020)PubMedCrossRef
405.
Zurück zum Zitat J. Li, M. Du, G. Lv, L. Zhou, X. Li, L. Bertoluzzi, C. Liu, S. Zhu, J. Zhu, Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv. Mater. 30, e1805159 (2018)PubMedCrossRef J. Li, M. Du, G. Lv, L. Zhou, X. Li, L. Bertoluzzi, C. Liu, S. Zhu, J. Zhu, Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv. Mater. 30, e1805159 (2018)PubMedCrossRef
406.
Zurück zum Zitat S.K. Loeb, J. Kim, C. Jiang, L.S. Early, H. Wei, Q. Li, J.H. Kim, Nanoparticle enhanced interfacial solar photothermal water disinfection demonstrated in 3-D printed flow-through reactors. Environ. Sci. Technol. 53, 7621–7631 (2019)PubMedCrossRef S.K. Loeb, J. Kim, C. Jiang, L.S. Early, H. Wei, Q. Li, J.H. Kim, Nanoparticle enhanced interfacial solar photothermal water disinfection demonstrated in 3-D printed flow-through reactors. Environ. Sci. Technol. 53, 7621–7631 (2019)PubMedCrossRef
407.
Zurück zum Zitat D. Krueger, A. Graves, Y. Chu, J. Pan, S.E. Lee, Y. Park, Integrated plasmonic gold nanoparticle dimer array for sustainable solar water disinfection. ACS Appl. Nano Mater. 6, 5568–5577 (2023)CrossRef D. Krueger, A. Graves, Y. Chu, J. Pan, S.E. Lee, Y. Park, Integrated plasmonic gold nanoparticle dimer array for sustainable solar water disinfection. ACS Appl. Nano Mater. 6, 5568–5577 (2023)CrossRef
408.
Zurück zum Zitat L. Zhao, B. Bhatia, L. Zhang, E. Strobach, A. Leroy, M.K. Yadav, S. Yang, T.A. Cooper, L.A. Weinstein, A. Modi, S.B. Kedare, G. Chen, E.N. Wang, A passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733–2745 (2020)CrossRef L. Zhao, B. Bhatia, L. Zhang, E. Strobach, A. Leroy, M.K. Yadav, S. Yang, T.A. Cooper, L.A. Weinstein, A. Modi, S.B. Kedare, G. Chen, E.N. Wang, A passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733–2745 (2020)CrossRef
409.
Zurück zum Zitat S.B. Borrelle, J. Ringma, K.L. Law, C.C. Monnahan, L. Lebreton, A. McGivern, E. Murphy, J. Jambeck, G.H. Leonard, M.A. Hilleary, M. Eriksen, H.P. Possingham, H. De Frond, L.R. Gerber, B. Polidoro, A. Tahir, M. Bernard, N. Mallos, M. Barnes, C.M. Rochman, Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020)PubMedCrossRef S.B. Borrelle, J. Ringma, K.L. Law, C.C. Monnahan, L. Lebreton, A. McGivern, E. Murphy, J. Jambeck, G.H. Leonard, M.A. Hilleary, M. Eriksen, H.P. Possingham, H. De Frond, L.R. Gerber, B. Polidoro, A. Tahir, M. Bernard, N. Mallos, M. Barnes, C.M. Rochman, Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020)PubMedCrossRef
410.
Zurück zum Zitat L. Cabernard, S. Pfister, C. Oberschelp, S. Hellweg, Growing environmental footprint of plastics driven by coal combustion. Nature Sustainability 5, 139–148 (2021)CrossRef L. Cabernard, S. Pfister, C. Oberschelp, S. Hellweg, Growing environmental footprint of plastics driven by coal combustion. Nature Sustainability 5, 139–148 (2021)CrossRef
411.
Zurück zum Zitat C. Wilcox, E. Van Sebille, B.D. Hardesty, Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl. Acad. Sci. U.S.A. 112, 11899–11904 (2015)PubMedPubMedCentralCrossRef C. Wilcox, E. Van Sebille, B.D. Hardesty, Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl. Acad. Sci. U.S.A. 112, 11899–11904 (2015)PubMedPubMedCentralCrossRef
412.
Zurück zum Zitat A. Stubbins, K.L. Law, S.E. Munoz, T.S. Bianchi, L. Zhu, Plastics in the Earth system. Science 373, 51–55 (2021)PubMedCrossRef A. Stubbins, K.L. Law, S.E. Munoz, T.S. Bianchi, L. Zhu, Plastics in the Earth system. Science 373, 51–55 (2021)PubMedCrossRef
413.
Zurück zum Zitat J. Yates, M. Deeney, H.B. Rolker, H. White, S. Kalamatianou, S. Kadiyala, A systematic scoping review of environmental, food security and health impacts of food system plastics. Nat. food 2, 80–87 (2021)PubMedCrossRef J. Yates, M. Deeney, H.B. Rolker, H. White, S. Kalamatianou, S. Kadiyala, A systematic scoping review of environmental, food security and health impacts of food system plastics. Nat. food 2, 80–87 (2021)PubMedCrossRef
414.
Zurück zum Zitat G.J. Mahler, M.B. Esch, E. Tako, T.L. Southard, S.D. Archer, R.P. Glahn, M.L. Shuler, Oral exposure to polystyrene nanoparticles affects iron absorption. Nat. Nanotechnol. 7, 264–271 (2012)PubMedCrossRef G.J. Mahler, M.B. Esch, E. Tako, T.L. Southard, S.D. Archer, R.P. Glahn, M.L. Shuler, Oral exposure to polystyrene nanoparticles affects iron absorption. Nat. Nanotechnol. 7, 264–271 (2012)PubMedCrossRef
415.
Zurück zum Zitat P. Wang, Z. Huang, S. Chen, M. Jing, Z. Ge, J. Chen, S. Yang, J. Chen, Y. Fang, Sustainable removal of nano/microplastics in water by solar energy. Chem. Eng. J. 428, 131196 (2022)CrossRef P. Wang, Z. Huang, S. Chen, M. Jing, Z. Ge, J. Chen, S. Yang, J. Chen, Y. Fang, Sustainable removal of nano/microplastics in water by solar energy. Chem. Eng. J. 428, 131196 (2022)CrossRef
416.
Zurück zum Zitat X. Dong, X. Liu, Q. Hou, Z. Wang, From natural environment to animal tissues: a review of microplastics (nanoplastics) translocation and hazards studies. Sci. Total. Environ. 855, 158686 (2023)PubMedCrossRef X. Dong, X. Liu, Q. Hou, Z. Wang, From natural environment to animal tissues: a review of microplastics (nanoplastics) translocation and hazards studies. Sci. Total. Environ. 855, 158686 (2023)PubMedCrossRef
417.
Zurück zum Zitat Y. Pan, S.H. Gao, C. Ge, Q. Gao, S. Huang, Y. Kang, G. Luo, Z. Zhang, L. Fan, Y. Zhu, A.J. Wang, Removing microplastics from aquatic environments: a critical review. Environ. Sci. Ecotechnol. 13, 100222 (2023)PubMedCrossRef Y. Pan, S.H. Gao, C. Ge, Q. Gao, S. Huang, Y. Kang, G. Luo, Z. Zhang, L. Fan, Y. Zhu, A.J. Wang, Removing microplastics from aquatic environments: a critical review. Environ. Sci. Ecotechnol. 13, 100222 (2023)PubMedCrossRef
418.
Zurück zum Zitat M. Padervand, E. Lichtfouse, D. Robert, C. Wang, Removal of microplastics from the environment. A review. Environ. Chem. Lett. 18, 807–828 (2020)CrossRef M. Padervand, E. Lichtfouse, D. Robert, C. Wang, Removal of microplastics from the environment. A review. Environ. Chem. Lett. 18, 807–828 (2020)CrossRef
419.
Zurück zum Zitat Y. Zhang, H. Jiang, K. Bian, H. Wang, C. Wang, Is froth flotation a potential scheme for microplastics removal? Anal. Flotat. Kinet. Surf. Characterist. Sci. Total Environ. 792, 148345 (2021)CrossRef Y. Zhang, H. Jiang, K. Bian, H. Wang, C. Wang, Is froth flotation a potential scheme for microplastics removal? Anal. Flotat. Kinet. Surf. Characterist. Sci. Total Environ. 792, 148345 (2021)CrossRef
420.
Zurück zum Zitat K.H. Shosuke Yoshida, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto,Y. Kimura, K. Oda, A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1119 (2016) K.H. Shosuke Yoshida, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto,Y. Kimura, K. Oda, A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1119 (2016)
421.
Zurück zum Zitat M. Enfrin, J. Lee, P. Le-Clech, L.F. Dumée, Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and microplastics. J. Membr. Sci. 601, 117890 (2020)CrossRef M. Enfrin, J. Lee, P. Le-Clech, L.F. Dumée, Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and microplastics. J. Membr. Sci. 601, 117890 (2020)CrossRef
422.
Zurück zum Zitat S. Moon, L.M.A. Martin, S. Kim, Q. Zhang, R. Zhang, W. Xu, T. Luo, Direct observation and identification of nanoplastics in ocean water. Sci. Adv. 10 (2024) eadh1675 S. Moon, L.M.A. Martin, S. Kim, Q. Zhang, R. Zhang, W. Xu, T. Luo, Direct observation and identification of nanoplastics in ocean water. Sci. Adv. 10 (2024) eadh1675
423.
Zurück zum Zitat B.J. Roxworthy, A.M. Bhuiya, S.P. Vanka, K.C. Toussaint Jr., Understanding and controlling plasmon-induced convection. Nat. Commun. 5, 3173 (2014)PubMedCrossRef B.J. Roxworthy, A.M. Bhuiya, S.P. Vanka, K.C. Toussaint Jr., Understanding and controlling plasmon-induced convection. Nat. Commun. 5, 3173 (2014)PubMedCrossRef
424.
Zurück zum Zitat C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J.D. Mai, T.J. Huang, Theory and experiment on particle trapping and manipulation via optothermally generated bubbles. Lab Chip 14, 384–391 (2014)PubMedCrossRef C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J.D. Mai, T.J. Huang, Theory and experiment on particle trapping and manipulation via optothermally generated bubbles. Lab Chip 14, 384–391 (2014)PubMedCrossRef
425.
Zurück zum Zitat H. Ye, Y. Wang, X. Liu, D. Xu, H. Yuan, H. Sun, S. Wang, X. Ma, Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removals. J. Colloid Interface Sci. 588, 510–521 (2021)PubMedCrossRef H. Ye, Y. Wang, X. Liu, D. Xu, H. Yuan, H. Sun, S. Wang, X. Ma, Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removals. J. Colloid Interface Sci. 588, 510–521 (2021)PubMedCrossRef
426.
Zurück zum Zitat K.M. Wyss, J.T. Li, P.A. Advincula, K.V. Bets, W. Chen, L. Eddy, K.J. Silva, J.L. Beckham, J. Chen, W. Meng, B. Deng, S. Nagarajaiah, B.I. Yakobson, J.M. Tour, Upcycling of waste plastic into hybrid carbon nanomaterials. Adv. Mater. 35, e2209621 (2023)PubMedCrossRef K.M. Wyss, J.T. Li, P.A. Advincula, K.V. Bets, W. Chen, L. Eddy, K.J. Silva, J.L. Beckham, J. Chen, W. Meng, B. Deng, S. Nagarajaiah, B.I. Yakobson, J.M. Tour, Upcycling of waste plastic into hybrid carbon nanomaterials. Adv. Mater. 35, e2209621 (2023)PubMedCrossRef
427.
Zurück zum Zitat K. Wang, E. Schonbrun, P. Steinvurzel, K.B. Crozier, Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2, 469 (2011)PubMedCrossRef K. Wang, E. Schonbrun, P. Steinvurzel, K.B. Crozier, Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2, 469 (2011)PubMedCrossRef
428.
Zurück zum Zitat J.A. Darr, J. Zhang, N.M. Makwana, X. Weng, Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem. Rev. 117, 11125–11238 (2017)PubMedCrossRef J.A. Darr, J. Zhang, N.M. Makwana, X. Weng, Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem. Rev. 117, 11125–11238 (2017)PubMedCrossRef
429.
Zurück zum Zitat M. Ceballos, S. Funes-Hernando, G. Zampini, M. Cedrún-Morales, J.M. Vila-Fungueiriño, B. Pelaz, P. del Pino, Seeded-growth of PCN-224 onto plasmonic nanoparticles: photoactive microporous nanocarriers. Small Structur. 5 (2024) M. Ceballos, S. Funes-Hernando, G. Zampini, M. Cedrún-Morales, J.M. Vila-Fungueiriño, B. Pelaz, P. del Pino, Seeded-growth of PCN-224 onto plasmonic nanoparticles: photoactive microporous nanocarriers. Small Structur. 5 (2024)
430.
Zurück zum Zitat Q.N. Nguyen, C. Wang, Y. Shang, A. Janssen, Y. Xia, Colloidal synthesis of metal nanocrystals: from asymmetrical growth to symmetry breaking. Chem. Rev. 123, 3693–3760 (2023)PubMedCrossRef Q.N. Nguyen, C. Wang, Y. Shang, A. Janssen, Y. Xia, Colloidal synthesis of metal nanocrystals: from asymmetrical growth to symmetry breaking. Chem. Rev. 123, 3693–3760 (2023)PubMedCrossRef
431.
Zurück zum Zitat J. Lee, J. Yang, S.G. Kwon, T. Hyeon, Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1 (2016) J. Lee, J. Yang, S.G. Kwon, T. Hyeon, Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1 (2016)
432.
Zurück zum Zitat M. Strach, V. Mantella, J.R. Pankhurst, P. Iyengar, A. Loiudice, S. Das, C. Corminboeuf, W. van Beek, R. Buonsanti, Insights into reaction intermediates to predict synthetic pathways for shape-controlled metal nanocrystals. J. Am. Chem. Soc. 141, 16312–16322 (2019)PubMedCrossRef M. Strach, V. Mantella, J.R. Pankhurst, P. Iyengar, A. Loiudice, S. Das, C. Corminboeuf, W. van Beek, R. Buonsanti, Insights into reaction intermediates to predict synthetic pathways for shape-controlled metal nanocrystals. J. Am. Chem. Soc. 141, 16312–16322 (2019)PubMedCrossRef
433.
Zurück zum Zitat A. Trovarelli, J. Llorca, Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal. 7, 4716–4735 (2017)CrossRef A. Trovarelli, J. Llorca, Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal. 7, 4716–4735 (2017)CrossRef
434.
Zurück zum Zitat A. Shinde, D. Huang, M. Saldivar, H. Xu, M. Zeng, U. Okeibunor, L. Wang, C. Mejia, P. Tin, S. George, L. Zhang, Z. Cheng, Growth of colloidal nanoplate liquid crystals using temperature gradients. ACS Nano 13, 12461–12469 (2019)PubMedCrossRef A. Shinde, D. Huang, M. Saldivar, H. Xu, M. Zeng, U. Okeibunor, L. Wang, C. Mejia, P. Tin, S. George, L. Zhang, Z. Cheng, Growth of colloidal nanoplate liquid crystals using temperature gradients. ACS Nano 13, 12461–12469 (2019)PubMedCrossRef
435.
Zurück zum Zitat B. Huang, L. Miao, J. Li, Z. Xie, Y. Wang, J. Chai, Y. Zhai, Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing. Nat. Commun. 13, 1402 (2022)PubMedPubMedCentralCrossRef B. Huang, L. Miao, J. Li, Z. Xie, Y. Wang, J. Chai, Y. Zhai, Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing. Nat. Commun. 13, 1402 (2022)PubMedPubMedCentralCrossRef
436.
Zurück zum Zitat A. Kumar, K.W. Jeon, N. Kumari, I.S. Lee, Spatially confined formation and transformation of nanocrystals within nanometer-sized reaction media. Acc. Chem. Res. 51, 2867–2879 (2018)PubMedCrossRef A. Kumar, K.W. Jeon, N. Kumari, I.S. Lee, Spatially confined formation and transformation of nanocrystals within nanometer-sized reaction media. Acc. Chem. Res. 51, 2867–2879 (2018)PubMedCrossRef
437.
Zurück zum Zitat D.A. Boyd, L. Greengard, M. Brongersma, M.Y. El-Naggar, D.G. Goodwin, Plasmon-assisted chemical vapor deposition. Nano Lett. 6, 2592–2597 (2006)PubMedCrossRef D.A. Boyd, L. Greengard, M. Brongersma, M.Y. El-Naggar, D.G. Goodwin, Plasmon-assisted chemical vapor deposition. Nano Lett. 6, 2592–2597 (2006)PubMedCrossRef
438.
Zurück zum Zitat G.D. Martino, F.B. Michaelis, A.R. Salmon, S. Hofmann, J.J. Baumberg, Controlling nanowire growth by light. Nano Lett. 15, 7452–7457 (2015)PubMedCrossRef G.D. Martino, F.B. Michaelis, A.R. Salmon, S. Hofmann, J.J. Baumberg, Controlling nanowire growth by light. Nano Lett. 15, 7452–7457 (2015)PubMedCrossRef
439.
Zurück zum Zitat I.L. Violi, J. Gargiulo, C. von Bilderling, E. Cortes, F.D. Stefani, Light-induced polarization-directed growth of optically printed gold nanoparticles. Nano Lett. 16, 6529–6533 (2016)PubMedCrossRef I.L. Violi, J. Gargiulo, C. von Bilderling, E. Cortes, F.D. Stefani, Light-induced polarization-directed growth of optically printed gold nanoparticles. Nano Lett. 16, 6529–6533 (2016)PubMedCrossRef
440.
Zurück zum Zitat A. Biswas, N. Lemcoff, O. Shelonchik, D. Yesodi, E. Yehezkel, E.Y. Finestone, A. Upcher, Y. Weizmann, Photothermally heated colloidal synthesis of nanoparticles driven by silica-encapsulated plasmonic heat sources. Nat. Commun. 14 (2023) A. Biswas, N. Lemcoff, O. Shelonchik, D. Yesodi, E. Yehezkel, E.Y. Finestone, A. Upcher, Y. Weizmann, Photothermally heated colloidal synthesis of nanoparticles driven by silica-encapsulated plasmonic heat sources. Nat. Commun. 14 (2023)
441.
Zurück zum Zitat R. Kamarudheen, G. Kumari, A. Baldi, Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles. Nat. Commun. 11, 3957 (2020)PubMedPubMedCentralCrossRef R. Kamarudheen, G. Kumari, A. Baldi, Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles. Nat. Commun. 11, 3957 (2020)PubMedPubMedCentralCrossRef
442.
Zurück zum Zitat W. Guo, A.C. Johnston-Peck, Y. Zhang, Y. Hu, J. Huang, W.D. Wei, Cooperation of hot holes and surface adsorbates in plasmon-driven anisotropic growth of gold nanostars. J. Am. Chem. Soc. 142, 10921–10925 (2020)PubMedPubMedCentralCrossRef W. Guo, A.C. Johnston-Peck, Y. Zhang, Y. Hu, J. Huang, W.D. Wei, Cooperation of hot holes and surface adsorbates in plasmon-driven anisotropic growth of gold nanostars. J. Am. Chem. Soc. 142, 10921–10925 (2020)PubMedPubMedCentralCrossRef
443.
Zurück zum Zitat L.K. Khorashad, L.V. Besteiro, M.A. Correa-Duarte, S. Burger, Z.M. Wang, A.O. Govorov, Hot electrons generated in chiral plasmonic nanocrystals as a mechanism for surface photochemistry and chiral growth. J. Am. Chem. Soc. 142, 4193–4205 (2020)PubMedCrossRef L.K. Khorashad, L.V. Besteiro, M.A. Correa-Duarte, S. Burger, Z.M. Wang, A.O. Govorov, Hot electrons generated in chiral plasmonic nanocrystals as a mechanism for surface photochemistry and chiral growth. J. Am. Chem. Soc. 142, 4193–4205 (2020)PubMedCrossRef
444.
Zurück zum Zitat O. Shelonchik, N. Lemcoff, R. Shimoni, A. Biswas, E. Yehezkel, D. Yesodi, I. Hod, Y. Weizmann, Light-induced MOF synthesis enabling composite photothermal materials. Nat. Commun. 15, 1154 (2024)PubMedPubMedCentralCrossRef O. Shelonchik, N. Lemcoff, R. Shimoni, A. Biswas, E. Yehezkel, D. Yesodi, I. Hod, Y. Weizmann, Light-induced MOF synthesis enabling composite photothermal materials. Nat. Commun. 15, 1154 (2024)PubMedPubMedCentralCrossRef
445.
Zurück zum Zitat L.V. Besteiro, A. Movsesyan, O. Avalos-Ovando, S. Lee, E. Cortes, M.A. Correa-Duarte, Z.M. Wang, A.O. Govorov, Local growth mediated by plasmonic hot carriers: chirality from achiral nanocrystals using circularly polarized light. Nano Lett. 21, 10315–10324 (2021)PubMedPubMedCentralCrossRef L.V. Besteiro, A. Movsesyan, O. Avalos-Ovando, S. Lee, E. Cortes, M.A. Correa-Duarte, Z.M. Wang, A.O. Govorov, Local growth mediated by plasmonic hot carriers: chirality from achiral nanocrystals using circularly polarized light. Nano Lett. 21, 10315–10324 (2021)PubMedPubMedCentralCrossRef
446.
Zurück zum Zitat M. Sakamoto, M. Hada, W. Ota, F. Uesugi, T. Sato, Localised surface plasmon resonance inducing cooperative Jahn-Teller effect for crystal phase-change in a nanocrystal. Nat. Commun. 14, 4471 (2023)PubMedPubMedCentralCrossRef M. Sakamoto, M. Hada, W. Ota, F. Uesugi, T. Sato, Localised surface plasmon resonance inducing cooperative Jahn-Teller effect for crystal phase-change in a nanocrystal. Nat. Commun. 14, 4471 (2023)PubMedPubMedCentralCrossRef
447.
Zurück zum Zitat S.S. Kharintsev, E.I. Battalova, T.A. Mukhametzyanov, A.P. Pushkarev, I.G. Scheblykin, S.V. Makarov, E.O. Potma, D.A. Fishman, Light-controlled multiphase structuring of perovskite crystal enabled by thermoplasmonic metasurface. ACS Nano 17, 9235–9244 (2023)PubMedCrossRef S.S. Kharintsev, E.I. Battalova, T.A. Mukhametzyanov, A.P. Pushkarev, I.G. Scheblykin, S.V. Makarov, E.O. Potma, D.A. Fishman, Light-controlled multiphase structuring of perovskite crystal enabled by thermoplasmonic metasurface. ACS Nano 17, 9235–9244 (2023)PubMedCrossRef
448.
Zurück zum Zitat A.R.C. Baljon, M.O. Robbins, Energy dissipation during rupture of adhesive bonds. Science 271, 482–484 (1996)CrossRef A.R.C. Baljon, M.O. Robbins, Energy dissipation during rupture of adhesive bonds. Science 271, 482–484 (1996)CrossRef
449.
Zurück zum Zitat F. Patolsky, Y. Weizmann, I. Willner, Actin-based metallic nanowires as bio-nanotransporters. Nat. Mater. 3, 692–695 (2004)PubMedCrossRef F. Patolsky, Y. Weizmann, I. Willner, Actin-based metallic nanowires as bio-nanotransporters. Nat. Mater. 3, 692–695 (2004)PubMedCrossRef
450.
Zurück zum Zitat H. Shehla, A. Ishaq, Y. Khan, I. Javed, R. Saira, N. Shahzad, M. Maaza, Ion beam irradiation-induced nano-welding of Ag nanowires. Micro & Nano Letters 11, 34–37 (2016)CrossRef H. Shehla, A. Ishaq, Y. Khan, I. Javed, R. Saira, N. Shahzad, M. Maaza, Ion beam irradiation-induced nano-welding of Ag nanowires. Micro & Nano Letters 11, 34–37 (2016)CrossRef
451.
Zurück zum Zitat J.E. Krzanowski, A transmission electron microscopy study of ultrasonic wire bonding. IEEE Trans. Componen. Hybr. Manuf. Technol. 13, 176–181 (1989)CrossRef J.E. Krzanowski, A transmission electron microscopy study of ultrasonic wire bonding. IEEE Trans. Componen. Hybr. Manuf. Technol. 13, 176–181 (1989)CrossRef
452.
Zurück zum Zitat Z. Lin, X. Gui, Q. Gan, W. Chen, X. Cheng, M. Liu, Y. Zhu, Y. Yang, A. Cao, Z. Tang, In-situ welding carbon nanotubes into a porous solid with super-high compressive strength and fatigue resistance. Sci. Rep. 5, 11336 (2015)PubMedPubMedCentralCrossRef Z. Lin, X. Gui, Q. Gan, W. Chen, X. Cheng, M. Liu, Y. Zhu, Y. Yang, A. Cao, Z. Tang, In-situ welding carbon nanotubes into a porous solid with super-high compressive strength and fatigue resistance. Sci. Rep. 5, 11336 (2015)PubMedPubMedCentralCrossRef
453.
Zurück zum Zitat P. Peng, W. Guo, Y. Zhu, L. Liu, G. Zou, Y.N. Zhou, Nanoscale wire bonding of individual Ag nanowires on au substrate at room temperature. Nanomicro Lett 9, 26 (2017)PubMedPubMedCentral P. Peng, W. Guo, Y. Zhu, L. Liu, G. Zou, Y.N. Zhou, Nanoscale wire bonding of individual Ag nanowires on au substrate at room temperature. Nanomicro Lett 9, 26 (2017)PubMedPubMedCentral
454.
Zurück zum Zitat D.V. Wagle, G.A. Baker, Cold welding: a phenomenon for spontaneous self-healing and shape genesis at the nanoscale. Mater. Horizons 2, 157–167 (2015)CrossRef D.V. Wagle, G.A. Baker, Cold welding: a phenomenon for spontaneous self-healing and shape genesis at the nanoscale. Mater. Horizons 2, 157–167 (2015)CrossRef
455.
Zurück zum Zitat Y. Liu, J. Zhang, H. Gao, Y. Wang, Q. Liu, S. Huang, C.F. Guo, Z. Ren, Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17, 1090–1096 (2017)PubMedCrossRef Y. Liu, J. Zhang, H. Gao, Y. Wang, Q. Liu, S. Huang, C.F. Guo, Z. Ren, Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17, 1090–1096 (2017)PubMedCrossRef
456.
Zurück zum Zitat G. Dai, B. Wang, S. Xu, Y. Lu, Y. Shen, Side-to-side cold welding for controllable nanogap formation from “dumbbell” ultrathin gold nanorods. ACS Appl. Mater. Interfaces 8, 13506–13511 (2016)PubMedCrossRef G. Dai, B. Wang, S. Xu, Y. Lu, Y. Shen, Side-to-side cold welding for controllable nanogap formation from “dumbbell” ultrathin gold nanorods. ACS Appl. Mater. Interfaces 8, 13506–13511 (2016)PubMedCrossRef
457.
Zurück zum Zitat Y. Lu, J.Y. Huang, C. Wang, S. Sun, J. Lou, Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5, 218–224 (2010)PubMedCrossRef Y. Lu, J.Y. Huang, C. Wang, S. Sun, J. Lou, Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5, 218–224 (2010)PubMedCrossRef
458.
Zurück zum Zitat P.E.B. Changsoon Kim, Stephen R. Forres, Micropatterning of organic electronic devices by cold-welding. Science 288, 831–833 (2000) P.E.B. Changsoon Kim, Stephen R. Forres, Micropatterning of organic electronic devices by cold-welding. Science 288, 831–833 (2000)
459.
Zurück zum Zitat F. Gao, Z. Gu, Nano-soldering of magnetically aligned three-dimensional nanowire networks. Nanotechnology 21, 115604 (2010)PubMedCrossRef F. Gao, Z. Gu, Nano-soldering of magnetically aligned three-dimensional nanowire networks. Nanotechnology 21, 115604 (2010)PubMedCrossRef
460.
Zurück zum Zitat Z.Y. Gu, H.K. Ye, D.H. Gracias, The bonding of nanowire assemblies using adhesive and solder. Jom-Us 57, 60–64 (2005)CrossRef Z.Y. Gu, H.K. Ye, D.H. Gracias, The bonding of nanowire assemblies using adhesive and solder. Jom-Us 57, 60–64 (2005)CrossRef
461.
Zurück zum Zitat Y. Peng, T. Cullis, B. Inkson, Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett. 9, 91–96 (2009)PubMedCrossRef Y. Peng, T. Cullis, B. Inkson, Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett. 9, 91–96 (2009)PubMedCrossRef
462.
Zurück zum Zitat H. Tohmyoh, T. Imaizumi, H. Hayashi, M. Saka, Welding of Pt nanowires by Joule heating. Scripta Mater. 57, 953–956 (2007)CrossRef H. Tohmyoh, T. Imaizumi, H. Hayashi, M. Saka, Welding of Pt nanowires by Joule heating. Scripta Mater. 57, 953–956 (2007)CrossRef
463.
Zurück zum Zitat T.B. Song, Y. Chen, C.H. Chung, Y.M. Yang, B. Bob, H.S. Duan, G. Li, K.N. Tu, Y. Huang, Y. Yang, Nanoscale Joule heating an electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8, 2804–2811 (2014)PubMedCrossRef T.B. Song, Y. Chen, C.H. Chung, Y.M. Yang, B. Bob, H.S. Duan, G. Li, K.N. Tu, Y. Huang, Y. Yang, Nanoscale Joule heating an electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8, 2804–2811 (2014)PubMedCrossRef
464.
Zurück zum Zitat R. Chellattoan, V. Lube, G. Lubineau, Toward programmable materials for wearable electronics: electrical welding turns sensors into conductors. Adv. Electron. Mater. 5 (2018) R. Chellattoan, V. Lube, G. Lubineau, Toward programmable materials for wearable electronics: electrical welding turns sensors into conductors. Adv. Electron. Mater. 5 (2018)
465.
Zurück zum Zitat E. Koleva, Electron beam weld parameters and thermal efficiency improvement. Vacuum 77, 413–421 (2005)CrossRef E. Koleva, Electron beam weld parameters and thermal efficiency improvement. Vacuum 77, 413–421 (2005)CrossRef
466.
Zurück zum Zitat M. Terrones, F. Banhart, N. Grobert, J.C. Charlier, H. Terrones, P.M. Ajayan, Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002)PubMedCrossRef M. Terrones, F. Banhart, N. Grobert, J.C. Charlier, H. Terrones, P.M. Ajayan, Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002)PubMedCrossRef
467.
Zurück zum Zitat L. Zhang, Y. Tang, Q. Peng, T. Yang, Q. Liu, Y. Wang, Y. Li, C. Du, Y. Sun, L. Cui, F. Yang, T. Shen, Z. Shan, J. Huang, Ceramic nanowelding. Nat. Commun. 9, 96 (2018)PubMedPubMedCentralCrossRef L. Zhang, Y. Tang, Q. Peng, T. Yang, Q. Liu, Y. Wang, Y. Li, C. Du, Y. Sun, L. Cui, F. Yang, T. Shen, Z. Shan, J. Huang, Ceramic nanowelding. Nat. Commun. 9, 96 (2018)PubMedPubMedCentralCrossRef
468.
Zurück zum Zitat G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L.G. Macdowell, M.A. Palafox, L.M. Liz-Marzán, O. Peña-Rodríguez, A. Guerrero-Martínez, Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 358, 640–644 (2017)PubMedCrossRef G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L.G. Macdowell, M.A. Palafox, L.M. Liz-Marzán, O. Peña-Rodríguez, A. Guerrero-Martínez, Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 358, 640–644 (2017)PubMedCrossRef
469.
Zurück zum Zitat H. Huang, L. Liu, P. Peng, A. Hu, W.W. Duley, Y. Zhou, Controlled joining of Ag nanoparticles with femtosecond laser radiation. J. Appl. Phys. 112 (2012) H. Huang, L. Liu, P. Peng, A. Hu, W.W. Duley, Y. Zhou, Controlled joining of Ag nanoparticles with femtosecond laser radiation. J. Appl. Phys. 112 (2012)
470.
Zurück zum Zitat T. Itoh, Y.S. Yamamoto, H. Tamaru, V. Biju, N. Murase, Y. Ozaki, Excitation laser energy dependence of surface-enhanced fluorescence showing plasmon-induced ultrafast electronic dynamics in dye molecules. Phys. Rev. B 87 (2013) T. Itoh, Y.S. Yamamoto, H. Tamaru, V. Biju, N. Murase, Y. Ozaki, Excitation laser energy dependence of surface-enhanced fluorescence showing plasmon-induced ultrafast electronic dynamics in dye molecules. Phys. Rev. B 87 (2013)
471.
Zurück zum Zitat G.V. Hartland, Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011)PubMedCrossRef G.V. Hartland, Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011)PubMedCrossRef
472.
Zurück zum Zitat J.H. Park, S. Jeong, E.J. Lee, S.S. Lee, J.Y. Seok, M. Yang, Y. Choi, B. Kang, Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem. Mater. 28, 4151–4159 (2016)CrossRef J.H. Park, S. Jeong, E.J. Lee, S.S. Lee, J.Y. Seok, M. Yang, Y. Choi, B. Kang, Transversally extended laser plasmonic welding for oxidation-free copper fabrication toward high-fidelity optoelectronics. Chem. Mater. 28, 4151–4159 (2016)CrossRef
473.
Zurück zum Zitat E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M. Greyson Christoforo, Y. Cui, M.D. McGehee, M.L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012) E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M. Greyson Christoforo, Y. Cui, M.D. McGehee, M.L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012)
474.
Zurück zum Zitat H. Pan, S.H. Ko, C.P. Grigoropoulos, The coalescence of supported gold nanoparticles induced by nanosecond laser irradiation. Appl. Phys. A 90, 247–253 (2007)CrossRef H. Pan, S.H. Ko, C.P. Grigoropoulos, The coalescence of supported gold nanoparticles induced by nanosecond laser irradiation. Appl. Phys. A 90, 247–253 (2007)CrossRef
475.
Zurück zum Zitat J.H. Lee, B.C. Huynh-Nguyen, E. Ko, J.H. Kim, G.H. Seong, Fabrication of flexible, transparent silver nanowire electrodes for amperometric detection of hydrogen peroxide. Sens. Actuators, B Chem. 224, 789–797 (2016)CrossRef J.H. Lee, B.C. Huynh-Nguyen, E. Ko, J.H. Kim, G.H. Seong, Fabrication of flexible, transparent silver nanowire electrodes for amperometric detection of hydrogen peroxide. Sens. Actuators, B Chem. 224, 789–797 (2016)CrossRef
476.
Zurück zum Zitat R. Rahimi, M. Ochoa, B. Ziaie, Direct laser writing of porous-carbon/silver nanocomposite for flexible electronics. ACS Appl. Mater. Interfaces 8, 16907–16913 (2016)PubMedCrossRef R. Rahimi, M. Ochoa, B. Ziaie, Direct laser writing of porous-carbon/silver nanocomposite for flexible electronics. ACS Appl. Mater. Interfaces 8, 16907–16913 (2016)PubMedCrossRef
477.
Zurück zum Zitat F. Mafune, J.Y. Kohno, Y. Takeda, T. Kondow, Nanoscale soldering of metal nanoparticles for construction of higher-order structures. J. Am. Chem. Soc. 125, 1686–1687 (2003)PubMedCrossRef F. Mafune, J.Y. Kohno, Y. Takeda, T. Kondow, Nanoscale soldering of metal nanoparticles for construction of higher-order structures. J. Am. Chem. Soc. 125, 1686–1687 (2003)PubMedCrossRef
478.
Zurück zum Zitat A. Kim, Y. Won, K. Woo, C.H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7, 1081–1091 (2013)PubMedCrossRef A. Kim, Y. Won, K. Woo, C.H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7, 1081–1091 (2013)PubMedCrossRef
479.
Zurück zum Zitat Q. Nian, M. Saei, Y. Xu, G. Sabyasachi, B. Deng, Y.P. Chen, G.J. Cheng, Crystalline nanojoining silver nanowire percolated networks on flexible substrate. ASC Nano (2015) Q. Nian, M. Saei, Y. Xu, G. Sabyasachi, B. Deng, Y.P. Chen, G.J. Cheng, Crystalline nanojoining silver nanowire percolated networks on flexible substrate. ASC Nano (2015)
480.
Zurück zum Zitat S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet, D. Poulikakos, Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Appl. Phys. Lett. 90 (2007) S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet, D. Poulikakos, Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Appl. Phys. Lett. 90 (2007)
481.
Zurück zum Zitat S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu, R. Panneerselvam, Z.Q. Tian, Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1 (2016) S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu, R. Panneerselvam, Z.Q. Tian, Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1 (2016)
482.
Zurück zum Zitat S.Y. Ding, E.M. You, Z.Q. Tian, M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46, 4042–4076 (2017)PubMedCrossRef S.Y. Ding, E.M. You, Z.Q. Tian, M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46, 4042–4076 (2017)PubMedCrossRef
483.
Zurück zum Zitat D. Liu, C. Xue, Plasmonic coupling architectures for enhanced photocatalysis. Adv. Mater e2005738 (2021) D. Liu, C. Xue, Plasmonic coupling architectures for enhanced photocatalysis. Adv. Mater e2005738 (2021)
484.
Zurück zum Zitat A. Hardiansyah, A.Y. Chen, H.L. Liao, M.C. Yang, T.Y. Liu, T.Y. Chan, H.M. Tsou, C.Y. Kuo, J.K. Wang, Y.L. Wang, Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection. Nanoscale Res. Lett. 10, 412 (2015)PubMedPubMedCentralCrossRef A. Hardiansyah, A.Y. Chen, H.L. Liao, M.C. Yang, T.Y. Liu, T.Y. Chan, H.M. Tsou, C.Y. Kuo, J.K. Wang, Y.L. Wang, Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection. Nanoscale Res. Lett. 10, 412 (2015)PubMedPubMedCentralCrossRef
485.
Zurück zum Zitat A. Alkurdi, J. Lombard, F. Detcheverry, S. Merabia, Enhanced heat transfer with metal-dielectric core-shell nanoparticles. Phys. Rev. Appl. 13 (2020) A. Alkurdi, J. Lombard, F. Detcheverry, S. Merabia, Enhanced heat transfer with metal-dielectric core-shell nanoparticles. Phys. Rev. Appl. 13 (2020)
486.
Zurück zum Zitat S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, E. Dujardin, Plasmonic hot printing in gold nanoprisms. ACS Photon. 2, 744–751 (2015)CrossRef S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, E. Dujardin, Plasmonic hot printing in gold nanoprisms. ACS Photon. 2, 744–751 (2015)CrossRef
487.
Zurück zum Zitat M. Rahman, K.S. Islam, T.M. Dip, M.F.M. Chowdhury, S.R. Debnath, S.M.M. Hasan, M.S. Sakib, T. Saha, R. Padhye, S. Houshyar, A review on nanomaterial-based additive manufacturing: dynamics in properties, prospects, and challenges. Progr. Addit. Manuf. (2023) M. Rahman, K.S. Islam, T.M. Dip, M.F.M. Chowdhury, S.R. Debnath, S.M.M. Hasan, M.S. Sakib, T. Saha, R. Padhye, S. Houshyar, A review on nanomaterial-based additive manufacturing: dynamics in properties, prospects, and challenges. Progr. Addit. Manuf. (2023)
488.
Zurück zum Zitat C. Zhao, B. Shi, S. Chen, D. Du, T. Sun, B.J. Simonds, K. Fezzaa, A.D. Rollett, Laser melting modes in metal powder bed fusion additive manufacturing. Rev. Modern Phys. 94 (2022) C. Zhao, B. Shi, S. Chen, D. Du, T. Sun, B.J. Simonds, K. Fezzaa, A.D. Rollett, Laser melting modes in metal powder bed fusion additive manufacturing. Rev. Modern Phys. 94 (2022)
489.
Zurück zum Zitat T. Hupfeld, A. Wegner, M. Blanke, C. Doñate‐Buendía, V. Sharov, S. Nieskens, M. Piechotta, M. Giese, S. Barcikowski, B. Gökce, Plasmonic seasoning: giving color to desktop laser 3D printed polymers by highly dispersed nanoparticles. Adv. Opt. Mater. 8 (2020) T. Hupfeld, A. Wegner, M. Blanke, C. Doñate‐Buendía, V. Sharov, S. Nieskens, M. Piechotta, M. Giese, S. Barcikowski, B. Gökce, Plasmonic seasoning: giving color to desktop laser 3D printed polymers by highly dispersed nanoparticles. Adv. Opt. Mater. 8 (2020)
490.
Zurück zum Zitat A.W. Powell, A. Stavrinadis, S. Christodoulou, R. Quidant, G. Konstantatos, On-demand activation of photochromic nanoheaters for high color purity 3D printing. Nano Lett. 20, 3485–3491 (2020)PubMedCrossRef A.W. Powell, A. Stavrinadis, S. Christodoulou, R. Quidant, G. Konstantatos, On-demand activation of photochromic nanoheaters for high color purity 3D printing. Nano Lett. 20, 3485–3491 (2020)PubMedCrossRef
491.
Zurück zum Zitat A.W. Powell, A. Stavrinadis, I. de Miguel, G. Konstantatos, R. Quidant, White and brightly colored 3D printing based on resonant photothermal sensitizers. Nano Lett. 18, 6660–6664 (2018)PubMedCrossRef A.W. Powell, A. Stavrinadis, I. de Miguel, G. Konstantatos, R. Quidant, White and brightly colored 3D printing based on resonant photothermal sensitizers. Nano Lett. 18, 6660–6664 (2018)PubMedCrossRef
492.
Zurück zum Zitat J. Xue, Z.K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, X.H. Wang, Scalable, full-colour and controllable chromotropic plasmonic printing. Nat. Commun. 6, 8906 (2015)PubMedCrossRef J. Xue, Z.K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, X.H. Wang, Scalable, full-colour and controllable chromotropic plasmonic printing. Nat. Commun. 6, 8906 (2015)PubMedCrossRef
493.
Zurück zum Zitat T. Lee, J. Jang, H. Jeong, J. Rho, Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg. 5, 1 (2018)PubMedPubMedCentralCrossRef T. Lee, J. Jang, H. Jeong, J. Rho, Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg. 5, 1 (2018)PubMedPubMedCentralCrossRef
494.
Zurück zum Zitat Y. Zhang, Q. Zhang, X. Ouyang, D.Y. Lei, A.P. Zhang, H.Y. Tam, Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing. ACS Nano 12, 9913–9921 (2018)PubMedCrossRef Y. Zhang, Q. Zhang, X. Ouyang, D.Y. Lei, A.P. Zhang, H.Y. Tam, Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing. ACS Nano 12, 9913–9921 (2018)PubMedCrossRef
495.
Zurück zum Zitat X.M. Goh, Y. Zheng, S.J. Tan, L. Zhang, K. Kumar, C.W. Qiu, J.K. Yang, Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun. 5, 5361 (2014)PubMedCrossRef X.M. Goh, Y. Zheng, S.J. Tan, L. Zhang, K. Kumar, C.W. Qiu, J.K. Yang, Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun. 5, 5361 (2014)PubMedCrossRef
496.
Zurück zum Zitat F. Zhang, M. Pu, P. Gao, J. Jin, X. Li, Y. Guo, X. Ma, J. Luo, H. Yu, X. Luo, Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv. Sci. (Weinh) 7, 1903156 (2020)PubMedCrossRef F. Zhang, M. Pu, P. Gao, J. Jin, X. Li, Y. Guo, X. Ma, J. Luo, H. Yu, X. Luo, Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv. Sci. (Weinh) 7, 1903156 (2020)PubMedCrossRef
497.
Zurück zum Zitat S.J. Tan, L. Zhang, D. Zhu, X.M. Goh, Y.M. Wang, K. Kumar, C.W. Qiu, J.K. Yang, Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014)PubMedCrossRef S.J. Tan, L. Zhang, D. Zhu, X.M. Goh, Y.M. Wang, K. Kumar, C.W. Qiu, J.K. Yang, Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014)PubMedCrossRef
498.
Zurück zum Zitat X. Zhu, C. Vannahme, E. Hojlund-Nielsen, N.A. Mortensen, A. Kristensen, Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325–329 (2016)PubMedCrossRef X. Zhu, C. Vannahme, E. Hojlund-Nielsen, N.A. Mortensen, A. Kristensen, Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325–329 (2016)PubMedCrossRef
499.
Zurück zum Zitat S.N. Chowdhury, P. Nyga, Z.A. Kudyshev, E. Garcia Bravo, A.S. Lagutchev, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, Lithography-free plasmonic color printing with femtosecond laser on semicontinuous silver films. ACS Photon. 8, 521–530 (2020) S.N. Chowdhury, P. Nyga, Z.A. Kudyshev, E. Garcia Bravo, A.S. Lagutchev, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, Lithography-free plasmonic color printing with femtosecond laser on semicontinuous silver films. ACS Photon. 8, 521–530 (2020)
500.
Zurück zum Zitat Z. Yan, Z. Zhang, W. Wu, X. Ji, S. Sun, Y. Jiang, C.C. Tan, L. Yang, C.T. Chong, C.W. Qiu, R. Zhao, Floating solid-state thin films with dynamic structural colour. Nat. Nanotechnol. 16, 795–801 (2021)PubMedCrossRef Z. Yan, Z. Zhang, W. Wu, X. Ji, S. Sun, Y. Jiang, C.C. Tan, L. Yang, C.T. Chong, C.W. Qiu, R. Zhao, Floating solid-state thin films with dynamic structural colour. Nat. Nanotechnol. 16, 795–801 (2021)PubMedCrossRef
Metadaten
Titel
Engineering Applications
verfasst von
Guohua Liu
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8332-8_5