Skip to main content

2014 | OriginalPaper | Buchkapitel

15. Engineering Aptamers for Biomedical Applications: Part I

verfasst von : Ya Cao, Genxi Li

Erschienen in: Engineering in Translational Medicine

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aptamers are single-stranded DNA or RNA oligonucleotides that are selected for specific binding to a wide range of targets by systematic evolution of ligands by exponential enrichment (SELEX) technology. Aptamers have high specificity and affinity toward target molecules and exhibit desired thermal stability. Additionally, the oligonucleotide nature makes aptamers easy to be chemically modified or incorporated with other DNA/RNA molecules. Owing to these outstanding properties, aptamers have attracted considerable attention within different branches of biomedicine. On the other hand, biosensors are miniaturized analytical devices that are playing an important role in biomedical applications, especially in clinical diagnoses. Recent advances in molecular engineering of aptamers with enhanced bioavailability signal generation and amplification abilities have greatly facilitated the development of aptamer-based biosensors and have pushed them closer to clinical applications. In this chapter, we will detail the recent development in engineering aptamers and highlight the work for sensor applications by using engineered aptamers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi:10.1038/346818a0 Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi:10.​1038/​346818a0
3.
Zurück zum Zitat Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. doi:10.1126/science.2200121 Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. doi:10.​1126/​science.​2200121
4.
Zurück zum Zitat Ciesiolka J, Gorski J, Yarus M (1995) Selection of an RNA domain that binds Zn2+. RNA 1(5):538–550 Ciesiolka J, Gorski J, Yarus M (1995) Selection of an RNA domain that binds Zn2+. RNA 1(5):538–550
5.
Zurück zum Zitat Li N, Wang Y, Pothukuchy A, Syrett A, Husain N, Gopalakrisha S, Kosaraju P, Ellington AD (2008) Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res 36(21):6739–6751. doi:10.1093/nar/gkn775 Li N, Wang Y, Pothukuchy A, Syrett A, Husain N, Gopalakrisha S, Kosaraju P, Ellington AD (2008) Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res 36(21):6739–6751. doi:10.​1093/​nar/​gkn775
6.
Zurück zum Zitat Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80(3):721–728. doi:10.1021/ac701962v Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80(3):721–728. doi:10.​1021/​ac701962v
7.
Zurück zum Zitat Mairal T, Cengiz Özalp V, Lozano Sánchez P, Mir M, Katakis I, O’Sullivan CK (2007) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390(4):989–1007. doi:10.1007/s00216-007-1346-4 Mairal T, Cengiz Özalp V, Lozano Sánchez P, Mir M, Katakis I, O’Sullivan CK (2007) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390(4):989–1007. doi:10.​1007/​s00216-007-1346-4
8.
Zurück zum Zitat Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M (1996) RNA aptamers that bind l-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24(6):1029–1036. doi:10.1093/nar/24.6.1029 Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M (1996) RNA aptamers that bind l-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24(6):1029–1036. doi:10.​1093/​nar/​24.​6.​1029
12.
13.
14.
Zurück zum Zitat Zhu G, Ye M, Donovan MJ, Song E, Zhao Z, Tan W (2012) Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem Commun 48(85):10472. doi:10.1039/c2cc35042d Zhu G, Ye M, Donovan MJ, Song E, Zhao Z, Tan W (2012) Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem Commun 48(85):10472. doi:10.​1039/​c2cc35042d
15.
Zurück zum Zitat Esposito CL, Catuogno S, de Franciscis V, Cerchia L (2011) New insight into clinical development of nucleic acid aptamers. Discov Med 11(61):487–496 Esposito CL, Catuogno S, de Franciscis V, Cerchia L (2011) New insight into clinical development of nucleic acid aptamers. Discov Med 11(61):487–496
17.
Zurück zum Zitat Hirsch IB, Armstrong D, Bergenstal RM, Buckingham B, Childs BP, Clarke WL, Peters A, Wolpert H (2008) Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM). Diabetes Technol Ther 10(4):232–244. doi:10.1089/dia.2008.0016 quiz 245–236 Hirsch IB, Armstrong D, Bergenstal RM, Buckingham B, Childs BP, Clarke WL, Peters A, Wolpert H (2008) Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM). Diabetes Technol Ther 10(4):232–244. doi:10.​1089/​dia.​2008.​0016 quiz 245–236
21.
Zurück zum Zitat Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43(4):496–505. doi:10.1021/ar900165x Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43(4):496–505. doi:10.​1021/​ar900165x
22.
Zurück zum Zitat You M, Chen Y, Peng L, Han D, Yin B, Ye B, Tan W (2011) Engineering DNA aptamers for novel analytical and biomedical applications. Chem Sci 2(6):1003. doi:10.1039/c0sc00647e You M, Chen Y, Peng L, Han D, Yin B, Ye B, Tan W (2011) Engineering DNA aptamers for novel analytical and biomedical applications. Chem Sci 2(6):1003. doi:10.​1039/​c0sc00647e
28.
Zurück zum Zitat Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126(1):20–21. doi:10.1021/ja037832s Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126(1):20–21. doi:10.​1021/​ja037832s
29.
Zurück zum Zitat Liu Y, Wang C, Li F, Shen S, Tyrrell DLJ, Le XC, Li X-F (2012) DNase-mediated single-cycle selection of aptamers for proteins blotted on a membrane. Anal Chem 84(18):7603–7606. doi:10.1021/ac302047e Liu Y, Wang C, Li F, Shen S, Tyrrell DLJ, Le XC, Li X-F (2012) DNase-mediated single-cycle selection of aptamers for proteins blotted on a membrane. Anal Chem 84(18):7603–7606. doi:10.​1021/​ac302047e
30.
31.
Zurück zum Zitat Miyachi Y, Shimizu N, Ogino C, Kondo A (2009) Selection of DNA aptamers using atomic force microscopy. Nucleic Acids Res 38(4):e21–e21. doi:10.1093/nar/gkp1101 Miyachi Y, Shimizu N, Ogino C, Kondo A (2009) Selection of DNA aptamers using atomic force microscopy. Nucleic Acids Res 38(4):e21–e21. doi:10.​1093/​nar/​gkp1101
32.
Zurück zum Zitat Mendonsa SD, Bowser MT (2005) In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc 127(26):9382–9383. doi:10.1021/ja052406n Mendonsa SD, Bowser MT (2005) In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc 127(26):9382–9383. doi:10.​1021/​ja052406n
33.
Zurück zum Zitat Tang J, Xie J, Shao N, Yan Y (2006) The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis 27(7):1303–1311. doi:10.1002/elps.200500489 Tang J, Xie J, Shao N, Yan Y (2006) The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis 27(7):1303–1311. doi:10.​1002/​elps.​200500489
34.
Zurück zum Zitat Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci USA 106(9):2989–2994. doi:10.1073/pnas.0813135106 Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci USA 106(9):2989–2994. doi:10.​1073/​pnas.​0813135106
35.
Zurück zum Zitat Weng C-H, Huang C-J, Lee G-B (2012) Screening of aptamers on microfluidic systems for clinical applications. Sensors 12(12):9514–9529. doi:10.3390/s120709514 Weng C-H, Huang C-J, Lee G-B (2012) Screening of aptamers on microfluidic systems for clinical applications. Sensors 12(12):9514–9529. doi:10.​3390/​s120709514
36.
Zurück zum Zitat Qian J, Lou X, Zhang Y, Xiao Y, Soh HT (2009) Generation of highly specific aptamers via micromagnetic selection. Anal Chem 81(13):5490–5495. doi:10.1021/ac900759k Qian J, Lou X, Zhang Y, Xiao Y, Soh HT (2009) Generation of highly specific aptamers via micromagnetic selection. Anal Chem 81(13):5490–5495. doi:10.​1021/​ac900759k
37.
Zurück zum Zitat Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57. doi:10.1021/ar900101s Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57. doi:10.​1021/​ar900101s
38.
Zurück zum Zitat Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) From the cover: aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103(32):11838–11843. doi:10.1073/pnas.0602615103 Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) From the cover: aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103(32):11838–11843. doi:10.​1073/​pnas.​0602615103
40.
Zurück zum Zitat Kunii T, S-i Ogura, Mie M, Kobatake E (2011) Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX. Analyst 136(7):1310. doi:10.1039/c0an00962h Kunii T, S-i Ogura, Mie M, Kobatake E (2011) Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX. Analyst 136(7):1310. doi:10.​1039/​c0an00962h
42.
Zurück zum Zitat Thielges MC, Zimmermann J, Yu W, Oda M, Romesberg FE (2008) Exploring the energy landscape of antibody-antigen complexes: protein dynamics, flexibility, and molecular recognition. Biochemistry 47(27):7237–7247. doi:10.1021/bi800374q Thielges MC, Zimmermann J, Yu W, Oda M, Romesberg FE (2008) Exploring the energy landscape of antibody-antigen complexes: protein dynamics, flexibility, and molecular recognition. Biochemistry 47(27):7237–7247. doi:10.​1021/​bi800374q
44.
Zurück zum Zitat Cao Y, Zhu S, Yu J, Zhu X, Yin Y, Li G (2012) Protein detection based on small molecule-linked DNA. Anal Chem 84(10):4314–4320. doi:10.1021/ac203401h Cao Y, Zhu S, Yu J, Zhu X, Yin Y, Li G (2012) Protein detection based on small molecule-linked DNA. Anal Chem 84(10):4314–4320. doi:10.​1021/​ac203401h
46.
Zurück zum Zitat Xu Y, Cheng G, He P, Fang Y (2009) A review: electrochemical aptasensors with various detection strategies. Electroanalysis 21(11):1251–1259. doi:10.1002/elan.200804561 Xu Y, Cheng G, He P, Fang Y (2009) A review: electrochemical aptasensors with various detection strategies. Electroanalysis 21(11):1251–1259. doi:10.​1002/​elan.​200804561
47.
Zurück zum Zitat Tolle F, Mayer G (2013) Dressed for success—applying chemistry to modulate aptamer functionality. Chem Sci 4(1):60. doi:10.1039/c2sc21510a Tolle F, Mayer G (2013) Dressed for success—applying chemistry to modulate aptamer functionality. Chem Sci 4(1):60. doi:10.​1039/​c2sc21510a
48.
Zurück zum Zitat Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, McCauley TG, Kurz JC, Epstein DM, Wilson C, Keefe AD (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12(1):25–33. doi:10.1016/j.chembiol.2004.10.017 Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, McCauley TG, Kurz JC, Epstein DM, Wilson C, Keefe AD (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12(1):25–33. doi:10.​1016/​j.​chembiol.​2004.​10.​017
49.
Zurück zum Zitat Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PK, Nishikawa S (2006) Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem 139(3):383–390. doi:10.1093/jb/mvj046 Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PK, Nishikawa S (2006) Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem 139(3):383–390. doi:10.​1093/​jb/​mvj046
50.
Zurück zum Zitat Lin Y, Nieuwlandt D, Magallanez A, Feistner B, Jayasena SD (1996) High-affinity and specific recognition of human thyroid stimulating hormone (hTSH) by in vitro-selected 2′-amino-modified RNA. Nucleic Acids Res 24(17):3407–3414. doi:10.1093/nar/24.17.3407 Lin Y, Nieuwlandt D, Magallanez A, Feistner B, Jayasena SD (1996) High-affinity and specific recognition of human thyroid stimulating hormone (hTSH) by in vitro-selected 2′-amino-modified RNA. Nucleic Acids Res 24(17):3407–3414. doi:10.​1093/​nar/​24.​17.​3407
51.
52.
Zurück zum Zitat Schmidt KS (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32(19):5757–5765. doi:10.1093/nar/gkh862 Schmidt KS (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32(19):5757–5765. doi:10.​1093/​nar/​gkh862
54.
Zurück zum Zitat Shoji A, Kuwahara M, Ozaki H, Sawai H (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J Am Chem Soc 129(5):1456–1464. doi:10.1021/ja067098n Shoji A, Kuwahara M, Ozaki H, Sawai H (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J Am Chem Soc 129(5):1456–1464. doi:10.​1021/​ja067098n
56.
Zurück zum Zitat King DJ, Bassett SE, Li X, Fennewald SA, Herzog NK, Luxon BA, Shope R, Gorenstein DG (2002) Combinatorial selection and binding of phosphorothioate aptamers targeting human NF-kappa B RelA(p65) and p50. Biochemistry 41(30):9696–9706. doi:10.1021/bi020220k King DJ, Bassett SE, Li X, Fennewald SA, Herzog NK, Luxon BA, Shope R, Gorenstein DG (2002) Combinatorial selection and binding of phosphorothioate aptamers targeting human NF-kappa B RelA(p65) and p50. Biochemistry 41(30):9696–9706. doi:10.​1021/​bi020220k
57.
Zurück zum Zitat King DJ, Ventura DA, Brasier AR, Gorenstein DG (1998) Novel combinatorial selection of phosphorothioate oligonucleotide aptamers. Biochemistry 37(47):16489–16493. doi:10.1021/bi981780f King DJ, Ventura DA, Brasier AR, Gorenstein DG (1998) Novel combinatorial selection of phosphorothioate oligonucleotide aptamers. Biochemistry 37(47):16489–16493. doi:10.​1021/​bi981780f
58.
Zurück zum Zitat Du H, Rosbash M (2002) The U1 snRNP protein U1C recognizes the 5′splice site in the absence of base pairing. Nature 419(6902):86–90. doi:10.1038/nature00947 Du H, Rosbash M (2002) The U1 snRNP protein U1C recognizes the 5′splice site in the absence of base pairing. Nature 419(6902):86–90. doi:10.​1038/​nature00947
59.
Zurück zum Zitat Pagratis NC, Bell C, Chang YF, Jennings S, Fitzwater T, Jellinek D, Dang C (1997) Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol 15(1):68–73. doi:10.1038/nbt0197-68 Pagratis NC, Bell C, Chang YF, Jennings S, Fitzwater T, Jellinek D, Dang C (1997) Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol 15(1):68–73. doi:10.​1038/​nbt0197-68
61.
Zurück zum Zitat Dollins CM, Nair S, Boczkowski D, Lee J, Layzer JM, Gilboa E, Sullenger BA (2008) Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem Biol 15(7):675–682. doi:10.1016/j.chembiol.2008.05.016 Dollins CM, Nair S, Boczkowski D, Lee J, Layzer JM, Gilboa E, Sullenger BA (2008) Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem Biol 15(7):675–682. doi:10.​1016/​j.​chembiol.​2008.​05.​016
62.
63.
Zurück zum Zitat Padmanabhan K, Padmanabhan KP, Ferrara JD, Sadler JE, Tulinsky A (1993) The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem 268(24):17651–17654 Padmanabhan K, Padmanabhan KP, Ferrara JD, Sadler JE, Tulinsky A (1993) The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem 268(24):17651–17654
64.
Zurück zum Zitat Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566. doi:10.1038/355564a0 Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566. doi:10.​1038/​355564a0
65.
Zurück zum Zitat Müller J, Wulffen B, Pötzsch B, Mayer G (2007) Multidomain targeting generates a high-affinity thrombin-inhibiting bivalent aptamer. ChemBioChem 8(18):2223–2226. doi:10.1002/cbic.200700535 Müller J, Wulffen B, Pötzsch B, Mayer G (2007) Multidomain targeting generates a high-affinity thrombin-inhibiting bivalent aptamer. ChemBioChem 8(18):2223–2226. doi:10.​1002/​cbic.​200700535
66.
Zurück zum Zitat Kim Y, Dennis DM, Morey T, Yang L, Tan W (2010) Engineering dendritic aptamer assemblies as superior inhibitors of protein function. Chem Asian J 5(1):56–59. doi:10.1002/asia.200900421 Kim Y, Dennis DM, Morey T, Yang L, Tan W (2010) Engineering dendritic aptamer assemblies as superior inhibitors of protein function. Chem Asian J 5(1):56–59. doi:10.​1002/​asia.​200900421
67.
Zurück zum Zitat Hasegawa H, Taira K, Sode K, Ikebukuro K (2008) Improvement of aptamer affinity by dimerization. Sensors 8:1090–1098. doi:10.3390/s8021090 Hasegawa H, Taira K, Sode K, Ikebukuro K (2008) Improvement of aptamer affinity by dimerization. Sensors 8:1090–1098. doi:10.​3390/​s8021090
68.
Zurück zum Zitat Hsu C-L, Chang H-T, Chen C-T, Wei S-C, Shiang Y-C, Huang C–C (2011) Highly efficient control of thrombin activity by multivalent nanoparticles. Chem Eur J 17(39):10994–11000. doi:10.1002/chem.201101081 Hsu C-L, Chang H-T, Chen C-T, Wei S-C, Shiang Y-C, Huang C–C (2011) Highly efficient control of thrombin activity by multivalent nanoparticles. Chem Eur J 17(39):10994–11000. doi:10.​1002/​chem.​201101081
69.
Zurück zum Zitat Huang YF, Chang HT, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572. doi:10.1021/ac702322j Huang YF, Chang HT, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572. doi:10.​1021/​ac702322j
70.
Zurück zum Zitat Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132(27):9274–9276. doi:10.1021/ja103169v Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132(27):9274–9276. doi:10.​1021/​ja103169v
71.
Zurück zum Zitat Cho H, Baker BR, Wachsmann-Hogiu S, Pagba CV, Laurence TA, Lane SM, Lee LP, Tok JB (2008) Aptamer-based SERRS sensor for thrombin detection. Nano Lett 8(12):4386–4390. doi:10.1021/nl802245w Cho H, Baker BR, Wachsmann-Hogiu S, Pagba CV, Laurence TA, Lane SM, Lee LP, Tok JB (2008) Aptamer-based SERRS sensor for thrombin detection. Nano Lett 8(12):4386–4390. doi:10.​1021/​nl802245w
72.
Zurück zum Zitat Xing H, Wong NY, Xiang Y, Lu Y (2012) DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16(3–4):429–435. doi:10.1016/j.cbpa.2012.03.016 Xing H, Wong NY, Xiang Y, Lu Y (2012) DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16(3–4):429–435. doi:10.​1016/​j.​cbpa.​2012.​03.​016
73.
75.
Zurück zum Zitat Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W (2009) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed 48(5):856–870. doi:10.1002/anie.200800370 Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W (2009) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed 48(5):856–870. doi:10.​1002/​anie.​200800370
76.
Zurück zum Zitat Song S, Liang Z, Zhang J, Wang L, Li G, Fan C (2009) Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed 48(46):8670–8674. doi:10.1002/anie.200901887 Song S, Liang Z, Zhang J, Wang L, Li G, Fan C (2009) Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed 48(46):8670–8674. doi:10.​1002/​anie.​200901887
78.
Zurück zum Zitat Kim B, Jung IH, Kang M, Shim H-K, Woo HY (2012) Cationic conjugated polyelectrolytes-triggered conformational change of molecular beacon aptamer for highly sensitive and selective potassium ion detection. J Am Chem Soc 134(6):3133–3138. doi:10.1021/ja210360v Kim B, Jung IH, Kang M, Shim H-K, Woo HY (2012) Cationic conjugated polyelectrolytes-triggered conformational change of molecular beacon aptamer for highly sensitive and selective potassium ion detection. J Am Chem Soc 134(6):3133–3138. doi:10.​1021/​ja210360v
80.
Zurück zum Zitat Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82(19):8131–8136. doi:10.1021/ac101409t Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82(19):8131–8136. doi:10.​1021/​ac101409t
81.
Zurück zum Zitat Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci USA 108(10):3900–3905. doi:10.1073/pnas.1016197108 Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci USA 108(10):3900–3905. doi:10.​1073/​pnas.​1016197108
82.
Zurück zum Zitat Zheng J, Li J, Jiang Y, Jin J, Wang K, Yang R, Tan W (2011) Design of aptamer-based sensing platform using triple-helix molecular switch. Anal Chem 83(17):6586–6592. doi:10.1021/ac201314y Zheng J, Li J, Jiang Y, Jin J, Wang K, Yang R, Tan W (2011) Design of aptamer-based sensing platform using triple-helix molecular switch. Anal Chem 83(17):6586–6592. doi:10.​1021/​ac201314y
84.
Zurück zum Zitat Cho EJ, Yang L, Levy M, Ellington AD (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J Am Chem Soc 127(7):2022–2023. doi:10.1021/ja043490u Cho EJ, Yang L, Levy M, Ellington AD (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J Am Chem Soc 127(7):2022–2023. doi:10.​1021/​ja043490u
85.
Zurück zum Zitat Lu L-M, Zhang X-B, Kong R-M, Yang B, Tan W (2011) A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal. J Am Chem Soc 133(30):11686–11691. doi:10.1021/ja203693b Lu L-M, Zhang X-B, Kong R-M, Yang B, Tan W (2011) A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal. J Am Chem Soc 133(30):11686–11691. doi:10.​1021/​ja203693b
87.
Zurück zum Zitat Song P, Xiang Y, Xing H, Zhou Z, Tong A, Lu Y (2012) Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules. Anal Chem 84(6):2916–2922. doi:10.1021/ac203488p Song P, Xiang Y, Xing H, Zhou Z, Tong A, Lu Y (2012) Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules. Anal Chem 84(6):2916–2922. doi:10.​1021/​ac203488p
88.
Zurück zum Zitat Sook Bang G, Cho S, Lee N, Lee B-R, Kim J-H, Kim B-G (2013) Rational design of modular allosteric aptamer sensor for label-free protein detection. Biosens Bioelectron 39(1):44–50. doi:10.1016/j.bios.2012.06.038 Sook Bang G, Cho S, Lee N, Lee B-R, Kim J-H, Kim B-G (2013) Rational design of modular allosteric aptamer sensor for label-free protein detection. Biosens Bioelectron 39(1):44–50. doi:10.​1016/​j.​bios.​2012.​06.​038
89.
Zurück zum Zitat Yoshida W, Sode K, Ikebukuro K (2006) Aptameric enzyme subunit for biosensing based on enzymatic activity measurement. Anal Chem 78(10):3296–3303. doi:10.1021/ac060254o Yoshida W, Sode K, Ikebukuro K (2006) Aptameric enzyme subunit for biosensing based on enzymatic activity measurement. Anal Chem 78(10):3296–3303. doi:10.​1021/​ac060254o
90.
91.
Zurück zum Zitat Wang J, Cao Y, Chen G, Li G (2009) Regulation of thrombin activity with a bifunctional aptamer and hemin: development of a new anticoagulant and antidote pair. ChemBioChem 10(13):2171–2176. doi:10.1002/cbic.200900408 Wang J, Cao Y, Chen G, Li G (2009) Regulation of thrombin activity with a bifunctional aptamer and hemin: development of a new anticoagulant and antidote pair. ChemBioChem 10(13):2171–2176. doi:10.​1002/​cbic.​200900408
92.
Zurück zum Zitat Zhang K, Zhu X, Wang J, Xu L, Li G (2010) Strategy to fabricate an electrochemical aptasensor: application to the assay of adenosine deaminase activity. Anal Chem 82(8):3207–3211. doi:10.1021/ac902771k Zhang K, Zhu X, Wang J, Xu L, Li G (2010) Strategy to fabricate an electrochemical aptasensor: application to the assay of adenosine deaminase activity. Anal Chem 82(8):3207–3211. doi:10.​1021/​ac902771k
93.
Zurück zum Zitat Wang J, Liu B (2009) Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. Chem Commun 17:2284. doi:10.1039/b820001g Wang J, Liu B (2009) Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. Chem Commun 17:2284. doi:10.​1039/​b820001g
94.
Zurück zum Zitat Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129(5):1042–1043. doi:10.1021/ja067024b Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129(5):1042–1043. doi:10.​1021/​ja067024b
95.
96.
Zurück zum Zitat Chen Y, O’Donoghue MB, Huang YF, Kang H, Phillips JA, Chen X, Estevez MC, Yang CJ, Tan W (2010) A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc 132(46):16559–16570. doi:10.1021/ja106360v Chen Y, O’Donoghue MB, Huang YF, Kang H, Phillips JA, Chen X, Estevez MC, Yang CJ, Tan W (2010) A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc 132(46):16559–16570. doi:10.​1021/​ja106360v
97.
98.
Zurück zum Zitat Green LS, Jellinek D, Jenison R, Ostman A, Heldin CH, Janjic N (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35(45):14413–14424. doi:10.1021/bi961544+ Green LS, Jellinek D, Jenison R, Ostman A, Heldin CH, Janjic N (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35(45):14413–14424. doi:10.​1021/​bi961544+
99.
Zurück zum Zitat Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126(38):11768–11769. doi:10.1021/ja046970u Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126(38):11768–11769. doi:10.​1021/​ja046970u
101.
102.
Zurück zum Zitat Mascini M, Palchetti I, Tombelli S (2012) Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed 51(6):1316–1332. doi:10.1002/anie.201006630 Mascini M, Palchetti I, Tombelli S (2012) Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed 51(6):1316–1332. doi:10.​1002/​anie.​201006630
103.
Zurück zum Zitat Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80(3):707–712. doi:10.1021/ac701910r Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80(3):707–712. doi:10.​1021/​ac701910r
104.
Zurück zum Zitat Wang J, Meng W, Zheng X, Liu S, Li G (2009) Combination of aptamer with gold nanoparticles for electrochemical signal amplification: application to sensitive detection of platelet-derived growth factor. Biosens Bioelectron 24(6):1598–1602. doi:10.1016/j.bios.2008.08.030 Wang J, Meng W, Zheng X, Liu S, Li G (2009) Combination of aptamer with gold nanoparticles for electrochemical signal amplification: application to sensitive detection of platelet-derived growth factor. Biosens Bioelectron 24(6):1598–1602. doi:10.​1016/​j.​bios.​2008.​08.​030
105.
Zurück zum Zitat Bai L, Yuan R, Chai Y, Zhuo Y, Yuan Y, Wang Y (2012) Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials 33(4):1090–1096. doi:10.1016/j.biomaterials.2011.10.012 Bai L, Yuan R, Chai Y, Zhuo Y, Yuan Y, Wang Y (2012) Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials 33(4):1090–1096. doi:10.​1016/​j.​biomaterials.​2011.​10.​012
106.
Zurück zum Zitat Zhang YL, Huang Y, Jiang JH, Shen GL, Yu RQ (2007) Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. J Am Chem Soc 129(50):15448–15449. doi:10.1021/ja0773047 Zhang YL, Huang Y, Jiang JH, Shen GL, Yu RQ (2007) Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. J Am Chem Soc 129(50):15448–15449. doi:10.​1021/​ja0773047
107.
108.
Zurück zum Zitat Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan WH (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci USA 102(48):17278–17283. doi:10.1073/pnas.0508821102 Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan WH (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci USA 102(48):17278–17283. doi:10.​1073/​pnas.​0508821102
109.
Zurück zum Zitat Mok W, Li Y (2008) Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8(11):7050–7084. doi:10.3390/s8117050 Mok W, Li Y (2008) Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8(11):7050–7084. doi:10.​3390/​s8117050
111.
Zurück zum Zitat Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed 44(34):5456–5459. doi:10.1002/anie.200500989 Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed 44(34):5456–5459. doi:10.​1002/​anie.​200500989
112.
Zurück zum Zitat Wu Z-S, Chen C-R, Shen G-L, Yu R-Q (2008) Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection. Biomaterials 29(17):2689–2696. doi:10.1016/j.biomaterials.2008.02.024 Wu Z-S, Chen C-R, Shen G-L, Yu R-Q (2008) Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection. Biomaterials 29(17):2689–2696. doi:10.​1016/​j.​biomaterials.​2008.​02.​024
114.
Zurück zum Zitat White RJ, Plaxco KW (2010) Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Anal Chem 82(1):73–76. doi:10.1021/ac902595f White RJ, Plaxco KW (2010) Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Anal Chem 82(1):73–76. doi:10.​1021/​ac902595f
115.
Zurück zum Zitat Ferapontova EE, Olsen EM, Gothelf KV (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J Am Chem Soc 130(13):4256–4258. doi:10.1021/ja711326b Ferapontova EE, Olsen EM, Gothelf KV (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J Am Chem Soc 130(13):4256–4258. doi:10.​1021/​ja711326b
116.
Zurück zum Zitat Radi AE, Acero Sanchez JL, Baldrich E, O’Sullivan CK (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128(1):117–124. doi:10.1021/ja053121d Radi AE, Acero Sanchez JL, Baldrich E, O’Sullivan CK (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128(1):117–124. doi:10.​1021/​ja053121d
117.
Zurück zum Zitat Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128(10):3138–3139. doi:10.1021/ja056957p Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128(10):3138–3139. doi:10.​1021/​ja056957p
118.
Zurück zum Zitat Zhao S, Yang W, Lai RY (2011) A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron 26(5):2442–2447. doi:10.1016/j.bios.2010.10.029 Zhao S, Yang W, Lai RY (2011) A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron 26(5):2442–2447. doi:10.​1016/​j.​bios.​2010.​10.​029
119.
Zurück zum Zitat Radi A-E, O’Sullivan CK (2006) Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem Commun 32:3432. doi:10.1039/b606804a Radi A-E, O’Sullivan CK (2006) Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem Commun 32:3432. doi:10.​1039/​b606804a
120.
Zurück zum Zitat Zuo X, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131(20):6944–6945. doi:10.1021/ja901315w Zuo X, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131(20):6944–6945. doi:10.​1021/​ja901315w
121.
Zurück zum Zitat Sharma AK, Kent AD, Heemstra JM (2012) Enzyme-linked small-molecule detection using split aptamer ligation. Anal Chem 84(14):6104–6109. doi:10.1021/ac300997q Sharma AK, Kent AD, Heemstra JM (2012) Enzyme-linked small-molecule detection using split aptamer ligation. Anal Chem 84(14):6104–6109. doi:10.​1021/​ac300997q
122.
Zurück zum Zitat Freeman R, Sharon E, Tel-Vered R, Willner I (2009) Supramolecular cocaine-aptamer complexes activate biocatalytic cascades. J Am Chem Soc 131(14):5028–5029. doi:10.1021/ja809496n Freeman R, Sharon E, Tel-Vered R, Willner I (2009) Supramolecular cocaine-aptamer complexes activate biocatalytic cascades. J Am Chem Soc 131(14):5028–5029. doi:10.​1021/​ja809496n
123.
Zurück zum Zitat Kashefi-Kheyrabadi L, Mehrgardi MA (2012) Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate. Biosens Bioelectron 37(1):94–98. doi:10.1016/j.bios.2012.04.045 Kashefi-Kheyrabadi L, Mehrgardi MA (2012) Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate. Biosens Bioelectron 37(1):94–98. doi:10.​1016/​j.​bios.​2012.​04.​045
124.
Zurück zum Zitat Dave N, Liu J (2012) Biomimetic sensing based on chemically induced assembly of a signaling DNA aptamer on a fluid bilayer membrane. Chem Commun 48(31):3718. doi:10.1039/c2cc00070a Dave N, Liu J (2012) Biomimetic sensing based on chemically induced assembly of a signaling DNA aptamer on a fluid bilayer membrane. Chem Commun 48(31):3718. doi:10.​1039/​c2cc00070a
125.
Zurück zum Zitat Freeman R, Girsh J, Fang-ju Jou A, Ho JAA, Hug T, Dernedde J, Willner I (2012) Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem 84(14):6192–6198. doi:10.1021/ac3011473 Freeman R, Girsh J, Fang-ju Jou A, Ho JAA, Hug T, Dernedde J, Willner I (2012) Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem 84(14):6192–6198. doi:10.​1021/​ac3011473
126.
Zurück zum Zitat Yamamoto-Fujita R, Kumar PK (2005) Aptamer-derived nucleic acid oligos: applications to develop nucleic acid chips to analyze proteins and small ligands. Anal Chem 77(17):5460–5466. doi:10.1021/ac050364f Yamamoto-Fujita R, Kumar PK (2005) Aptamer-derived nucleic acid oligos: applications to develop nucleic acid chips to analyze proteins and small ligands. Anal Chem 77(17):5460–5466. doi:10.​1021/​ac050364f
127.
Zurück zum Zitat Lin Z, Chen L, Zhu X, Qiu B, Chen G (2010) Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Chem Commun 46(30):5563. doi:10.1039/c0cc00932f Lin Z, Chen L, Zhu X, Qiu B, Chen G (2010) Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Chem Commun 46(30):5563. doi:10.​1039/​c0cc00932f
129.
Zurück zum Zitat Mei H, Bing T, Yang X, Qi C, Chang T, Liu X, Cao Z, Shangguan D (2012) Functional-group specific aptamers indirectly recognizing compounds with alkyl amino group. Anal Chem 84(17):7323–7329. doi:10.1021/ac300281u Mei H, Bing T, Yang X, Qi C, Chang T, Liu X, Cao Z, Shangguan D (2012) Functional-group specific aptamers indirectly recognizing compounds with alkyl amino group. Anal Chem 84(17):7323–7329. doi:10.​1021/​ac300281u
130.
Zurück zum Zitat Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C (2010) Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6(2):201–204. doi:10.1002/smll.200901012 Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C (2010) Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6(2):201–204. doi:10.​1002/​smll.​200901012
131.
Zurück zum Zitat Yoshizumi J, Kumamoto S, Nakamura M, Yamana K (2008) Target-induced strand release (TISR) from aptamer–DNA duplex: a general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst 133(3):323. doi:10.1039/b719089c Yoshizumi J, Kumamoto S, Nakamura M, Yamana K (2008) Target-induced strand release (TISR) from aptamer–DNA duplex: a general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst 133(3):323. doi:10.​1039/​b719089c
132.
Zurück zum Zitat Wu ZS, Guo MM, Zhang SB, Chen CR, Jiang JH, Shen GL, Yu RQ (2007) Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem 79(7):2933–2939. doi:10.1021/ac0622936 Wu ZS, Guo MM, Zhang SB, Chen CR, Jiang JH, Shen GL, Yu RQ (2007) Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem 79(7):2933–2939. doi:10.​1021/​ac0622936
133.
Zurück zum Zitat Chen L, Cai Q, Luo F, Chen X, Zhu X, Qiu B, Lin Z, Chen G (2010) A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)32+-doped silica nanoparticle ECL by ferrocene. Chem Commun 46(41):7751. doi:10.1039/c0cc03225e Chen L, Cai Q, Luo F, Chen X, Zhu X, Qiu B, Lin Z, Chen G (2010) A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)32+-doped silica nanoparticle ECL by ferrocene. Chem Commun 46(41):7751. doi:10.​1039/​c0cc03225e
134.
Zurück zum Zitat Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101(39):14036–14039. doi:10.1073/pnas.0406115101 Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101(39):14036–14039. doi:10.​1073/​pnas.​0406115101
135.
Zurück zum Zitat Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mate 2(5):338–342. doi:10.1038/nmat877 Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mate 2(5):338–342. doi:10.​1038/​nmat877
136.
137.
Zurück zum Zitat Yang R, Tang Z, Yan J, Kang H, Kim Y, Zhu Z, Tan W (2008) Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal Chem 80(19):7408–7413. doi:10.1021/ac801118p Yang R, Tang Z, Yan J, Kang H, Kim Y, Zhu Z, Tan W (2008) Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal Chem 80(19):7408–7413. doi:10.​1021/​ac801118p
139.
Zurück zum Zitat Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19(22):3943–3946. doi:10.1002/adma.200602256 Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19(22):3943–3946. doi:10.​1002/​adma.​200602256
141.
Zurück zum Zitat Wang L, Zhu J, Han L, Jin L, Zhu C, Wang E, Dong S (2012) Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano 6(8):6659–6666. doi:10.1021/nn300997f Wang L, Zhu J, Han L, Jin L, Zhu C, Wang E, Dong S (2012) Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano 6(8):6659–6666. doi:10.​1021/​nn300997f
142.
Zurück zum Zitat Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130(33):10856–10857. doi:10.1021/ja802913f Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130(33):10856–10857. doi:10.​1021/​ja802913f
143.
Zurück zum Zitat Tang D, Tang J, Li Q, Su B, Chen G (2011) Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I. Anal Chem 83(19):7255–7259. doi:10.1021/ac201891w Tang D, Tang J, Li Q, Su B, Chen G (2011) Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I. Anal Chem 83(19):7255–7259. doi:10.​1021/​ac201891w
144.
145.
147.
148.
149.
Zurück zum Zitat Liao S, Liu Y, Zeng J, Li X, Shao N, Mao A, Wang L, Ma J, Cen H, Wang Y, Zhang X, Zhang R, Wei Z, Wang X (2010) Aptamer-based sensitive detection of target molecules via RT-PCR signal amplification. Bioconjug Chem 21(12):2183–2189. doi:10.1021/bc100032v Liao S, Liu Y, Zeng J, Li X, Shao N, Mao A, Wang L, Ma J, Cen H, Wang Y, Zhang X, Zhang R, Wei Z, Wang X (2010) Aptamer-based sensitive detection of target molecules via RT-PCR signal amplification. Bioconjug Chem 21(12):2183–2189. doi:10.​1021/​bc100032v
150.
Zurück zum Zitat Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20(5):473–477. doi:10.1038/nbt0502-473 Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20(5):473–477. doi:10.​1038/​nbt0502-473
151.
152.
Zurück zum Zitat Kim J, Hu J, Sollie RS, Easley CJ (2010) Improvement of sensitivity and dynamic range in proximity ligation assays by asymmetric connector hybridization. Anal Chem 82(16):6976–6982. doi:10.1021/ac101762m Kim J, Hu J, Sollie RS, Easley CJ (2010) Improvement of sensitivity and dynamic range in proximity ligation assays by asymmetric connector hybridization. Anal Chem 82(16):6976–6982. doi:10.​1021/​ac101762m
153.
Zurück zum Zitat Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19(3):225–232. doi:10.1038/898 Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19(3):225–232. doi:10.​1038/​898
154.
Zurück zum Zitat Miao P, Ning L, Li X, Li P, Li G (2012) Electrochemical strategy for sensing protein phosphorylation. Bioconjugate Chem 23(1):141–145. doi:10.1021/bc200523p Miao P, Ning L, Li X, Li P, Li G (2012) Electrochemical strategy for sensing protein phosphorylation. Bioconjugate Chem 23(1):141–145. doi:10.​1021/​bc200523p
155.
Zurück zum Zitat Zhao W, Ali MM, Brook MA, Li Y (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed 47(34):6330–6337. doi:10.1002/anie.200705982 Zhao W, Ali MM, Brook MA, Li Y (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed 47(34):6330–6337. doi:10.​1002/​anie.​200705982
156.
Zurück zum Zitat Lee J, Icoz K, Roberts A, Ellington AD, Savran CA (2010) Diffractometric detection of proteins using microbead-based rolling circle amplification. Anal Chem 82(1):197–202. doi:10.1021/ac901716d Lee J, Icoz K, Roberts A, Ellington AD, Savran CA (2010) Diffractometric detection of proteins using microbead-based rolling circle amplification. Anal Chem 82(1):197–202. doi:10.​1021/​ac901716d
158.
Zurück zum Zitat Yang L, Fung CW, Cho EJ, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79(9):3320–3329. doi:10.1021/ac062186b Yang L, Fung CW, Cho EJ, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79(9):3320–3329. doi:10.​1021/​ac062186b
159.
Zurück zum Zitat Xu Y, Lunnen KD, Kong H (2001) Engineering a nicking endonuclease N. AlwI by domain swapping. Proc Natl Acad Sci USA 98(23):12990–12995. doi:10.1073/pnas.241215698 Xu Y, Lunnen KD, Kong H (2001) Engineering a nicking endonuclease N. AlwI by domain swapping. Proc Natl Acad Sci USA 98(23):12990–12995. doi:10.​1073/​pnas.​241215698
160.
Zurück zum Zitat Xu W, Xue X, Li T, Zeng H, Liu X (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48(37):6849–6852. doi:10.1002/anie.200901772 Xu W, Xue X, Li T, Zeng H, Liu X (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48(37):6849–6852. doi:10.​1002/​anie.​200901772
161.
Zurück zum Zitat Liu Z, Zhang W, Zhu S, Zhang L, Hu L, Parveen S, Xu G (2011) Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification. Biosens Bioelectron 29(1):215–218. doi:10.1016/j.bios.2011.07.076 Liu Z, Zhang W, Zhu S, Zhang L, Hu L, Parveen S, Xu G (2011) Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification. Biosens Bioelectron 29(1):215–218. doi:10.​1016/​j.​bios.​2011.​07.​076
162.
Zurück zum Zitat Li J, Fu H-E, Wu L-J, Zheng A-X, Chen G-N, Yang H–H (2012) General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Anal Chem 84(12):5309–5315. doi:10.1021/ac3006186 Li J, Fu H-E, Wu L-J, Zheng A-X, Chen G-N, Yang H–H (2012) General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Anal Chem 84(12):5309–5315. doi:10.​1021/​ac3006186
163.
Zurück zum Zitat Jie G, Wang L, Yuan J, Zhang S (2011) Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal Chem 83(10):3873–3880. doi:10.1021/ac200383z Jie G, Wang L, Yuan J, Zhang S (2011) Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal Chem 83(10):3873–3880. doi:10.​1021/​ac200383z
164.
Zurück zum Zitat Zhu X, Zhao J, Wu Y, Shen Z, Li G (2011) Fabrication of a highly sensitive aptasensor for potassium with a nicking endonuclease-assisted signal amplification strategy. Anal Chem 83(11):4085–4089. doi:10.1021/ac200058r Zhu X, Zhao J, Wu Y, Shen Z, Li G (2011) Fabrication of a highly sensitive aptasensor for potassium with a nicking endonuclease-assisted signal amplification strategy. Anal Chem 83(11):4085–4089. doi:10.​1021/​ac200058r
165.
Zurück zum Zitat Feng K, Kong R, Wang H, Zhang S, Qu F (2012) A universal amplified strategy for aptasensors: enhancing sensitivity through allostery-triggered enzymatic recycling amplification. Biosens Bioelectron 38(1):121–125. doi:10.1016/j.bios.2012.05.008 Feng K, Kong R, Wang H, Zhang S, Qu F (2012) A universal amplified strategy for aptasensors: enhancing sensitivity through allostery-triggered enzymatic recycling amplification. Biosens Bioelectron 38(1):121–125. doi:10.​1016/​j.​bios.​2012.​05.​008
166.
Zurück zum Zitat Zhang H, Li F, Dever B, Li X-F, Le XC (2012) DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem Rev. doi:10.1021/cr300340p Zhang H, Li F, Dever B, Li X-F, Le XC (2012) DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem Rev. doi:10.​1021/​cr300340p
167.
Zurück zum Zitat Fan Q, Zhao J, Li H, Zhu L, Li G (2012) Exonuclease III-based and gold nanoparticle-assisted DNA detection with dual signal amplification. Biosens Bioelectron 33(1):211–215. doi:10.1016/j.bios.2012.01.003 Fan Q, Zhao J, Li H, Zhu L, Li G (2012) Exonuclease III-based and gold nanoparticle-assisted DNA detection with dual signal amplification. Biosens Bioelectron 33(1):211–215. doi:10.​1016/​j.​bios.​2012.​01.​003
168.
Zurück zum Zitat Zuo X, Xia F, Xiao Y, Plaxco KW (2010) Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. J Am Chem Soc 132(6):1816–1818. doi:10.1021/ja909551b Zuo X, Xia F, Xiao Y, Plaxco KW (2010) Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. J Am Chem Soc 132(6):1816–1818. doi:10.​1021/​ja909551b
169.
Zurück zum Zitat Xuan F, Luo X, Hsing IM (2012) Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling. Anal Chem 84(12):5216–5220. doi:10.1021/ac301033w Xuan F, Luo X, Hsing IM (2012) Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling. Anal Chem 84(12):5216–5220. doi:10.​1021/​ac301033w
170.
Zurück zum Zitat Liu X, Freeman R, Willner I (2012) Amplified fluorescence aptamer-based sensors using exonuclease III for the regeneration of the analyte. Chem Eur J 18(8):2207–2211. doi:10.1002/chem.201103342 Liu X, Freeman R, Willner I (2012) Amplified fluorescence aptamer-based sensors using exonuclease III for the regeneration of the analyte. Chem Eur J 18(8):2207–2211. doi:10.​1002/​chem.​201103342
171.
Zurück zum Zitat Tong P, Zhang L, Xu J–J, Chen H-Y (2011) Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Biosens Bioelectron 29(1):97–101. doi:10.1016/j.bios.2011.07.075 Tong P, Zhang L, Xu J–J, Chen H-Y (2011) Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Biosens Bioelectron 29(1):97–101. doi:10.​1016/​j.​bios.​2011.​07.​075
173.
Zurück zum Zitat Zhu X, Yang J, Liu M, Wu Y, Shen Z, Li G (2013) Sensitive detection of human breast cancer cells based on aptamer–cell–aptamer sandwich architecture. Anal Chim Acta 764:59–63. doi:10.1016/j.aca.2012.12.024 Zhu X, Yang J, Liu M, Wu Y, Shen Z, Li G (2013) Sensitive detection of human breast cancer cells based on aptamer–cell–aptamer sandwich architecture. Anal Chim Acta 764:59–63. doi:10.​1016/​j.​aca.​2012.​12.​024
174.
Zurück zum Zitat Cao Y, Wang J, Xu Y, Li G (2010) Combination of enzyme catalysis and electrocatalysis for biosensor fabrication: Application to assay the activity of indoleamine 2,3-dioxygensae. Biosens Bioelectron 26(1):87–91. doi:10.1016/j.bios.2010.05.019 Cao Y, Wang J, Xu Y, Li G (2010) Combination of enzyme catalysis and electrocatalysis for biosensor fabrication: Application to assay the activity of indoleamine 2,3-dioxygensae. Biosens Bioelectron 26(1):87–91. doi:10.​1016/​j.​bios.​2010.​05.​019
175.
Zurück zum Zitat Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210. doi:10.1002/adma.200903783 Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210. doi:10.​1002/​adma.​200903783
176.
Zurück zum Zitat Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. doi:10.1038/nnano.2007.260 Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. doi:10.​1038/​nnano.​2007.​260
177.
Zurück zum Zitat Golub E, Pelossof G, Freeman R, Zhang H, Willner I (2009) Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem 81(22):9291–9298. doi:10.1021/ac901551q Golub E, Pelossof G, Freeman R, Zhang H, Willner I (2009) Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem 81(22):9291–9298. doi:10.​1021/​ac901551q
178.
Zurück zum Zitat Li W, Li J, Qiang W, Xu J, Xu D (2013) Enzyme-free colorimetric bioassay based on gold nanoparticle-catalyzed dye decolorization. Analyst 138(3):760. doi:10.1039/c2an36374g Li W, Li J, Qiang W, Xu J, Xu D (2013) Enzyme-free colorimetric bioassay based on gold nanoparticle-catalyzed dye decolorization. Analyst 138(3):760. doi:10.​1039/​c2an36374g
179.
Zurück zum Zitat Zhang XB, Wang Z, Xing H, Xiang Y, Lu Y (2010) Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Anal Chem 82(12):5005–5011. doi:10.1021/ac1009047 Zhang XB, Wang Z, Xing H, Xiang Y, Lu Y (2010) Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Anal Chem 82(12):5005–5011. doi:10.​1021/​ac1009047
181.
Zurück zum Zitat Yang Q, Nie Y, Zhu X, Liu X, Li G (2009) Study on the electrocatalytic activity of human telomere G-quadruplex–hemin complex and its interaction with small molecular ligands. Electrochim Acta 55(1):276–280. doi:10.1016/j.electacta.2009.08.050 Yang Q, Nie Y, Zhu X, Liu X, Li G (2009) Study on the electrocatalytic activity of human telomere G-quadruplex–hemin complex and its interaction with small molecular ligands. Electrochim Acta 55(1):276–280. doi:10.​1016/​j.​electacta.​2009.​08.​050
183.
Zurück zum Zitat Pelossof G, Tel-Vered R, Elbaz J, Willner I (2010) Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Anal Chem 82(11):4396–4402. doi:10.1021/ac100095u Pelossof G, Tel-Vered R, Elbaz J, Willner I (2010) Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Anal Chem 82(11):4396–4402. doi:10.​1021/​ac100095u
184.
Zurück zum Zitat Golub E, Freeman R, Willner I (2011) A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme. Angew Chem Int Ed 50(49):11710–11714. doi:10.1002/anie.201103853 Golub E, Freeman R, Willner I (2011) A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme. Angew Chem Int Ed 50(49):11710–11714. doi:10.​1002/​anie.​201103853
185.
Zurück zum Zitat Tang L, Liu Y, Ali MM, Kang DK, Zhao W, Li J (2012) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84(11):4711–4717. doi:10.1021/ac203274k Tang L, Liu Y, Ali MM, Kang DK, Zhao W, Li J (2012) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84(11):4711–4717. doi:10.​1021/​ac203274k
186.
Zurück zum Zitat Yuan Y, Yuan R, Chai Y, Zhuo Y, Ye X, Gan X, Bai L (2012) Hemin/G-quadruplex simultaneously acts as NADH oxidase and HRP-mimicking DNAzyme for simple, sensitive pseudobienzyme electrochemical detection of thrombin. Chem Commun 48(38):4621–4623. doi:10.1039/c2cc31423a Yuan Y, Yuan R, Chai Y, Zhuo Y, Ye X, Gan X, Bai L (2012) Hemin/G-quadruplex simultaneously acts as NADH oxidase and HRP-mimicking DNAzyme for simple, sensitive pseudobienzyme electrochemical detection of thrombin. Chem Commun 48(38):4621–4623. doi:10.​1039/​c2cc31423a
187.
Metadaten
Titel
Engineering Aptamers for Biomedical Applications: Part I
verfasst von
Ya Cao
Genxi Li
Copyright-Jahr
2014
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4372-7_15

Neuer Inhalt