Skip to main content
Erschienen in: Journal of Materials Science 26/2020

28.05.2020 | Energy materials

Engineering lithium-ion battery cathodes for high-voltage applications using electromagnetic excitation

verfasst von: Laisuo Su, Shikhar Krishn Jha, Xin Li Phuah, Jiang Xu, Nathan Nakamura, Haiyan Wang, John S. Okasinski, B. Reeja-Jayan

Erschienen in: Journal of Materials Science | Ausgabe 26/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microwave radiation (MWR), a type of electromagnetic excitation source, reduces the synthesis temperature and processing time for chemical reactions compared to traditional synthesis methods. Recently, we demonstrated that MWR can engineer ceramics with different crystal phases compared to traditional methods [Journal of Materials Chemistry A5, 35 (2017)]. In this study, we further apply the MWR-assisted technique to improve the electrochemical performance of LiCoO2 cathodes by engineering TiO2 and ZrO2 ceramic coatings. Electrochemical tests suggest that the TiO2 coating improves the rate capability of the LiCoO2 electrode. Both TiO2 and ZrO2 coatings improve the high-voltage (4.5 V) cycling stability of LiCoO2. The capacity remaining is improved from 52.8 to 84.4% and 81.9% by the TiO2 coating and the ZrO2 coating, respectively, after 40 cycles. We compare these results with existing studies that apply traditional methods to engineer TiO2/ZrO2 on LiCoO2, and find that the MWR-assisted method shows better performance improvement. X-ray photoelectron spectroscopy measurements suggest that the improved cycling stability arises from the formation of metal fluorides that protect the electrode from side reactions with electrolytes. This mechanism is further supported by the reduced Co dissolution from TiO2/ZrO2-coated LiCoO2 electrode after cycling. This study provides a new toolbox facilitating the integration of many delicate, low melting point materials like polymers into battery electrodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kalluri S, Yoon M, Jo M et al (2017) Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li–ion cells. Adv energy mater 7:1601507CrossRef Kalluri S, Yoon M, Jo M et al (2017) Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li–ion cells. Adv energy mater 7:1601507CrossRef
2.
Zurück zum Zitat Su L, Smith PM, Anand P et al (2018) Surface engineering of a LiMn2O4 electrode using nanoscale polymer thin films via chemical vapor deposition polymerization. ACS Appl Mater Inter 10:27063–27073CrossRef Su L, Smith PM, Anand P et al (2018) Surface engineering of a LiMn2O4 electrode using nanoscale polymer thin films via chemical vapor deposition polymerization. ACS Appl Mater Inter 10:27063–27073CrossRef
3.
Zurück zum Zitat Zhou A, Liu Q, Wang Y et al (2017) Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. J Mater Chem A 5:24361–24370CrossRef Zhou A, Liu Q, Wang Y et al (2017) Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. J Mater Chem A 5:24361–24370CrossRef
4.
Zurück zum Zitat Dai X, Wang L, Xu J et al (2014) Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering. ACS Appl Mater InteR 6:15853–15859CrossRef Dai X, Wang L, Xu J et al (2014) Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering. ACS Appl Mater InteR 6:15853–15859CrossRef
5.
Zurück zum Zitat Dai X, Zhou A, Xu J et al (2015) Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering. J Power Sour 298:114–122CrossRef Dai X, Zhou A, Xu J et al (2015) Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering. J Power Sour 298:114–122CrossRef
6.
Zurück zum Zitat Zhou A, Lu Y, Wang Q et al (2017) Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance. J Power Sour 346:24–30CrossRef Zhou A, Lu Y, Wang Q et al (2017) Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance. J Power Sour 346:24–30CrossRef
7.
Zurück zum Zitat Zhou A, Xu J, Dai X et al (2016) Improved high-voltage and high-temperature electrochemical performances of LiCoO2 cathode by electrode sputter-coating with Li3PO4. J Power Sour 322:10–16CrossRef Zhou A, Xu J, Dai X et al (2016) Improved high-voltage and high-temperature electrochemical performances of LiCoO2 cathode by electrode sputter-coating with Li3PO4. J Power Sour 322:10–16CrossRef
8.
Zurück zum Zitat Wang L, Chen B, Ma J et al (2018) Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem Soc Rev 47:6505–6602CrossRef Wang L, Chen B, Ma J et al (2018) Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem Soc Rev 47:6505–6602CrossRef
9.
Zurück zum Zitat Jha, S. K.; Phuah, X. L.; Luo, J. et al. (2018), The effects of external fields in ceramic sintering., J AM CERAM SOC Jha, S. K.; Phuah, X. L.; Luo, J. et al. (2018), The effects of external fields in ceramic sintering., J AM CERAM SOC
10.
Zurück zum Zitat Lidström P, Tierney J, Watheyb B et al (2001) Microwave assisted organic synthesis - a review. Tetrahedron 57:9225–9283CrossRef Lidström P, Tierney J, Watheyb B et al (2001) Microwave assisted organic synthesis - a review. Tetrahedron 57:9225–9283CrossRef
11.
Zurück zum Zitat Nakamura, N.; Terban, M. W.; Billinge, S. et al. (2017), Unlocking the structure of mixed amorphous-crystalline ceramic oxide films synthesized under low temperature electromagnetic excitation., J Mater Chem A Nakamura, N.; Terban, M. W.; Billinge, S. et al. (2017), Unlocking the structure of mixed amorphous-crystalline ceramic oxide films synthesized under low temperature electromagnetic excitation., J Mater Chem A
12.
Zurück zum Zitat Reeja-Jayan, B.; Harrison, K. L.; Yang, K. et al. (2012), Microwave-assisted Low-temperature Growth of Thin Films in Solution., Sci Rep-UK 2: Reeja-Jayan, B.; Harrison, K. L.; Yang, K. et al. (2012), Microwave-assisted Low-temperature Growth of Thin Films in Solution., Sci Rep-UK 2:
13.
Zurück zum Zitat Bondioli F, Ferrari AM, Leonelli C et al (2001) Microwave-hydrothermal synthesis of nanocrystalline zirconia powders. J Am Ceram Soc 84:2728–2730CrossRef Bondioli F, Ferrari AM, Leonelli C et al (2001) Microwave-hydrothermal synthesis of nanocrystalline zirconia powders. J Am Ceram Soc 84:2728–2730CrossRef
14.
Zurück zum Zitat Shah JJ, Mohanraj K (2014) Comparison of conventional and microwave-assisted synthesis of benzotriazole derivatives. Indian J Pharm Sci 76:46 Shah JJ, Mohanraj K (2014) Comparison of conventional and microwave-assisted synthesis of benzotriazole derivatives. Indian J Pharm Sci 76:46
15.
Zurück zum Zitat Kim KC, Jegal J, Bak S et al (2014) Improved high-voltage performance of FePO4-coated LiCoO2 by microwave-assisted hydrothermal method. Electrochem Commun 43:113–116CrossRef Kim KC, Jegal J, Bak S et al (2014) Improved high-voltage performance of FePO4-coated LiCoO2 by microwave-assisted hydrothermal method. Electrochem Commun 43:113–116CrossRef
16.
Zurück zum Zitat Hoogenboom R, Schubert US (2007) Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Commun 28:368–386CrossRef Hoogenboom R, Schubert US (2007) Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Commun 28:368–386CrossRef
17.
Zurück zum Zitat Su L, Tong P, Zhang L et al (2019) Photoelectrochemical immunoassay of aflatoxin B1 in foodstuff based on amorphous TiO2 and CsPbBr 3 perovskite nanocrystals. Analyst 144:4880–4886CrossRef Su L, Tong P, Zhang L et al (2019) Photoelectrochemical immunoassay of aflatoxin B1 in foodstuff based on amorphous TiO2 and CsPbBr 3 perovskite nanocrystals. Analyst 144:4880–4886CrossRef
18.
Zurück zum Zitat Shu J, Qiu Z, Lv S et al (2018) Plasmonic enhancement coupling with defect-engineered TiO2–x: a mode for sensitive photoelectrochemical biosensing. Anal Chem 90:2425–2429CrossRef Shu J, Qiu Z, Lv S et al (2018) Plasmonic enhancement coupling with defect-engineered TiO2–x: a mode for sensitive photoelectrochemical biosensing. Anal Chem 90:2425–2429CrossRef
19.
Zurück zum Zitat Kim YJ, Cho J, Kim T et al (2003) Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. J Electrochem Soc 150:1723CrossRef Kim YJ, Cho J, Kim T et al (2003) Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. J Electrochem Soc 150:1723CrossRef
20.
Zurück zum Zitat Nakamura N, Seepaul J, Kadane JB et al (2017) Design for low-temperature microwave-assisted crystallization of ceramic thin films. Appl Stoch Model Bus 33:314–321CrossRef Nakamura N, Seepaul J, Kadane JB et al (2017) Design for low-temperature microwave-assisted crystallization of ceramic thin films. Appl Stoch Model Bus 33:314–321CrossRef
22.
Zurück zum Zitat Jha SK, Nakamura N, Zhang S et al. (2019) Defect‐mediated anisotropic lattice expansion in ceramics as evidence for nonthermal coupling between electromagnetic fields and matter. Adv Eng Mater 1900762 Jha SK, Nakamura N, Zhang S et al. (2019) Defect‐mediated anisotropic lattice expansion in ceramics as evidence for nonthermal coupling between electromagnetic fields and matter. Adv Eng Mater 1900762
23.
Zurück zum Zitat Nakamura NJ, Culbertson E, Billinge SJ et al. (2019) The role of defects in microwave-assisted synthesis of cubic ZrO2 Nakamura NJ, Culbertson E, Billinge SJ et al. (2019) The role of defects in microwave-assisted synthesis of cubic ZrO2
24.
Zurück zum Zitat Nam KM, Shim JH, Han D et al (2010) Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals: their interconversion and tuning of phase and morphology. Chem Mater 22:4446–4454CrossRef Nam KM, Shim JH, Han D et al (2010) Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals: their interconversion and tuning of phase and morphology. Chem Mater 22:4446–4454CrossRef
25.
Zurück zum Zitat Sun Y, Han J, Myung S et al (2006) Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem Commun 8:821–826CrossRef Sun Y, Han J, Myung S et al (2006) Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem Commun 8:821–826CrossRef
26.
Zurück zum Zitat Schulz N, Hausbrand R, Wittich C et al (2018) XPS-surface analysis of sei layers on Li–Ion cathodes: part II. SEI-composition and formation inside composite electrodes. J Electrochem Soc 165:A833–A846CrossRef Schulz N, Hausbrand R, Wittich C et al (2018) XPS-surface analysis of sei layers on Li–Ion cathodes: part II. SEI-composition and formation inside composite electrodes. J Electrochem Soc 165:A833–A846CrossRef
27.
Zurück zum Zitat Schulz N, Hausbrand R, Dimesso L et al (2018) XPS-surface analysis of sei layers on Li–Ion cathodes: Part I. Investigation of initial surface chemistry. J Electrochem Soc 165:A819–A832CrossRef Schulz N, Hausbrand R, Dimesso L et al (2018) XPS-surface analysis of sei layers on Li–Ion cathodes: Part I. Investigation of initial surface chemistry. J Electrochem Soc 165:A819–A832CrossRef
28.
Zurück zum Zitat Yang Z, Li R, Deng Z (2018) A deep study of the protection of lithium cobalt oxide with polymer surface modification at 4.5 V high voltage. Sci Rep-UK Yang Z, Li R, Deng Z (2018) A deep study of the protection of lithium cobalt oxide with polymer surface modification at 4.5 V high voltage. Sci Rep-UK
29.
Zurück zum Zitat Bai Y, Liu N, Liu J et al (2006) Coating Material-Induced Acidic Electrolyte Improves LiCoO2 Performances. Electrochem Solid-State Lett 9:A552CrossRef Bai Y, Liu N, Liu J et al (2006) Coating Material-Induced Acidic Electrolyte Improves LiCoO2 Performances. Electrochem Solid-State Lett 9:A552CrossRef
30.
Zurück zum Zitat Aurbach D, Markovsky B, Rodkin A et al (2002) On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim Acta 47:4291–4306CrossRef Aurbach D, Markovsky B, Rodkin A et al (2002) On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim Acta 47:4291–4306CrossRef
31.
Zurück zum Zitat Miyashiro H, Yamanaka A, Tabuchi M et al (2006) Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2. J Electrochem Soc 153:A348–A353CrossRef Miyashiro H, Yamanaka A, Tabuchi M et al (2006) Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2. J Electrochem Soc 153:A348–A353CrossRef
32.
Zurück zum Zitat Cheng H, Wang F, Chu JP et al (2012) Enhanced cycleabity in lithium ion batteries: resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes. J Phys Chem C 116:7629–7637CrossRef Cheng H, Wang F, Chu JP et al (2012) Enhanced cycleabity in lithium ion batteries: resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes. J Phys Chem C 116:7629–7637CrossRef
33.
Zurück zum Zitat Jayasree SS, Nair S, Santhanagopalan D (2018) Ultrathin TiO2 coating on LiCoO2 for improved electrochemical performance as Li–ion battery cathode. CHEMISTRYSELECT 3:2763–2766CrossRef Jayasree SS, Nair S, Santhanagopalan D (2018) Ultrathin TiO2 coating on LiCoO2 for improved electrochemical performance as Li–ion battery cathode. CHEMISTRYSELECT 3:2763–2766CrossRef
34.
Zurück zum Zitat Hwang BJ, Chen CY, Cheng MY et al (2010) Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J Power Sour 195:4255–4265CrossRef Hwang BJ, Chen CY, Cheng MY et al (2010) Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J Power Sour 195:4255–4265CrossRef
35.
Zurück zum Zitat Chung KY, Yoon W, Lee HS et al (2006) In situ XRD studies of the structural changes of ZrO2-coated LiCoO2 during cycling and their effects on capacity retention in lithium batteries. J Power Sour 163:185–190CrossRef Chung KY, Yoon W, Lee HS et al (2006) In situ XRD studies of the structural changes of ZrO2-coated LiCoO2 during cycling and their effects on capacity retention in lithium batteries. J Power Sour 163:185–190CrossRef
36.
Zurück zum Zitat Yu J, Han Z, Hu X et al (2014) The investigation of Ti-modified LiCoO2 materials for lithium ion battery. J Power Sou 262:136–139CrossRef Yu J, Han Z, Hu X et al (2014) The investigation of Ti-modified LiCoO2 materials for lithium ion battery. J Power Sou 262:136–139CrossRef
37.
Zurück zum Zitat Zhang J, Wang R, Yang X et al (2012) Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. Nano Lett 12:2153–2157CrossRef Zhang J, Wang R, Yang X et al (2012) Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. Nano Lett 12:2153–2157CrossRef
38.
Zurück zum Zitat Kerlau M, Kostecki R (2006) Interfacial impedance study of Li–ion composite cathodes during aging at elevated temperatures. J Electrochem Soc 153:1644CrossRef Kerlau M, Kostecki R (2006) Interfacial impedance study of Li–ion composite cathodes during aging at elevated temperatures. J Electrochem Soc 153:1644CrossRef
Metadaten
Titel
Engineering lithium-ion battery cathodes for high-voltage applications using electromagnetic excitation
verfasst von
Laisuo Su
Shikhar Krishn Jha
Xin Li Phuah
Jiang Xu
Nathan Nakamura
Haiyan Wang
John S. Okasinski
B. Reeja-Jayan
Publikationsdatum
28.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 26/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04871-5

Weitere Artikel der Ausgabe 26/2020

Journal of Materials Science 26/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.