Skip to main content

2020 | OriginalPaper | Buchkapitel

6. Engineering of Dental Titanium Implants and Their Coating Techniques

verfasst von : Jonathan Wirth, Lobat Tayebi

Erschienen in: Applications of Biomedical Engineering in Dentistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coating can improve dental implant success rate in medically compromised patients, as it allows sustained delivery of medicaments and regenerative molecules to the implant site on a biomimetic matrix. There are many dimensions in which this technology can enhance implant treatments, with respect to improved blood clotting and bone formation via amplifying favorable properties—such as wettability, surface roughness, and biomimicry. Understanding the process of osseointegration will drive further research in the subject of bioengineering titanium implants with functionalized coats.
Coating techniques are variable among materials, mainly between organic and inorganic coats. The techniques are dependent on material properties and the integration of a variety of substrates. This chapter aims to describe physical and organic substrates, their individual coating mechanisms, and coating mechanisms that integrate a spectrum of biomaterials. This chapter also discusses, compares, and presents the additive coating techniques in dental titanium implants, their applications, and their rationale, as well as identifies the prospective trends.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schroeder, A., et al. (1981). The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. Journal of Maxillofacial Surgery, 9, 15–25.CrossRef Schroeder, A., et al. (1981). The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. Journal of Maxillofacial Surgery, 9, 15–25.CrossRef
2.
Zurück zum Zitat Tagliareni, J. M., & Clarkson, E. (2015). Basic concepts and techniques of dental implants. Dental Clinics, 59(2), 255–264. Tagliareni, J. M., & Clarkson, E. (2015). Basic concepts and techniques of dental implants. Dental Clinics, 59(2), 255–264.
3.
Zurück zum Zitat Ripamonti, U. (2018). Functionalized surface geometries induce:“Bone: Formation by Autoinduction”. Frontiers in Physiology, 8, 1084.CrossRef Ripamonti, U. (2018). Functionalized surface geometries induce:“Bone: Formation by Autoinduction”. Frontiers in Physiology, 8, 1084.CrossRef
4.
Zurück zum Zitat Ong, J. L., & Chan, D. C. (2000). Hydroxyapatite and their use as coatings in dental implants: a review. Critical Reviews™ in Biomedical Engineering, 28(5&6), 667.CrossRef Ong, J. L., & Chan, D. C. (2000). Hydroxyapatite and their use as coatings in dental implants: a review. Critical Reviews™ in Biomedical Engineering, 28(5&6), 667.CrossRef
5.
Zurück zum Zitat Chouirfa, H., et al. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37–54.CrossRef Chouirfa, H., et al. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37–54.CrossRef
6.
Zurück zum Zitat Ota-Tsuzuki, C., et al. (2011). Influence of titanium surface treatments on formation of the blood clot extension. Journal of Oral Implantology, 37(6), 641–647.CrossRef Ota-Tsuzuki, C., et al. (2011). Influence of titanium surface treatments on formation of the blood clot extension. Journal of Oral Implantology, 37(6), 641–647.CrossRef
7.
Zurück zum Zitat Shibata, Y., & Tanimoto, Y. (2015). A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. Journal of Prosthodontic Research, 59(1), 20–33.CrossRef Shibata, Y., & Tanimoto, Y. (2015). A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. Journal of Prosthodontic Research, 59(1), 20–33.CrossRef
8.
Zurück zum Zitat Damiati, L., et al. (2018). Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. Journal of Tissue Engineering, 9, 2041731418790694.CrossRef Damiati, L., et al. (2018). Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. Journal of Tissue Engineering, 9, 2041731418790694.CrossRef
9.
Zurück zum Zitat Parnia, F., et al. (2017). Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. Journal of Pharmacy & Pharmaceutical Sciences, 20, 148–160.CrossRef Parnia, F., et al. (2017). Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. Journal of Pharmacy & Pharmaceutical Sciences, 20, 148–160.CrossRef
10.
Zurück zum Zitat Graziani, G., et al. (2017). Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review. Materials Science and Engineering: C, 74, 219–229.CrossRef Graziani, G., et al. (2017). Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review. Materials Science and Engineering: C, 74, 219–229.CrossRef
11.
Zurück zum Zitat Yu, P., et al. (2017). Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 155, 507–515.CrossRef Yu, P., et al. (2017). Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 155, 507–515.CrossRef
12.
Zurück zum Zitat Norowski, P. A., et al. (2011). Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dentistry, 20(1), 56–67.CrossRef Norowski, P. A., et al. (2011). Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dentistry, 20(1), 56–67.CrossRef
13.
Zurück zum Zitat Kubasiewicz-Ross, P., et al. (2017). Zirconium: The material of the future in modern implantology. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 26(3), 533–537.CrossRef Kubasiewicz-Ross, P., et al. (2017). Zirconium: The material of the future in modern implantology. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 26(3), 533–537.CrossRef
14.
Zurück zum Zitat La, W.-G., et al. (2014). Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. International Journal of Nanomedicine, 9(Suppl 1), 107. La, W.-G., et al. (2014). Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. International Journal of Nanomedicine, 9(Suppl 1), 107.
15.
Zurück zum Zitat Panayotov, I. V., et al. (2015). Strategies for immobilization of bioactive organic molecules on titanium implant surfaces–a review. Folia Medica, 57(1), 11–18.CrossRef Panayotov, I. V., et al. (2015). Strategies for immobilization of bioactive organic molecules on titanium implant surfaces–a review. Folia Medica, 57(1), 11–18.CrossRef
16.
Zurück zum Zitat Meng, H.-W., Chien, E. Y., & Chien, H.-H. (2016). Dental implant bioactive surface modifications and their effects on osseointegration: a review. Biomarker Research, 4(1), 24.CrossRef Meng, H.-W., Chien, E. Y., & Chien, H.-H. (2016). Dental implant bioactive surface modifications and their effects on osseointegration: a review. Biomarker Research, 4(1), 24.CrossRef
17.
Zurück zum Zitat Zafar, M. S., et al. (2019). Bioactive surface coatings for enhancing osseointegration of dental implants. In Biomedical, therapeutic and clinical applications of bioactive glasses (pp. 313–329). Amsterdam, Netherlands: Elsevier.CrossRef Zafar, M. S., et al. (2019). Bioactive surface coatings for enhancing osseointegration of dental implants. In Biomedical, therapeutic and clinical applications of bioactive glasses (pp. 313–329). Amsterdam, Netherlands: Elsevier.CrossRef
18.
Zurück zum Zitat Goldman, M., Juodzbalys, G., & Vilkinis, V. (2014). Titanium surfaces with nanostructures influence on osteoblasts proliferation: a systematic review. Journal of Oral & Maxillofacial Research, 5(3), e1.CrossRef Goldman, M., Juodzbalys, G., & Vilkinis, V. (2014). Titanium surfaces with nanostructures influence on osteoblasts proliferation: a systematic review. Journal of Oral & Maxillofacial Research, 5(3), e1.CrossRef
19.
Zurück zum Zitat Gomez-Florit, M., et al. (2016). Quercitrin-nanocoated titanium surfaces favour gingival cells against oral bacteria. Scientific Reports, 6, 22444.CrossRef Gomez-Florit, M., et al. (2016). Quercitrin-nanocoated titanium surfaces favour gingival cells against oral bacteria. Scientific Reports, 6, 22444.CrossRef
20.
Zurück zum Zitat Satheeshababu, B., & Shivakumar, K. (2013). Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches. Indian Journal of Pharmaceutical Sciences, 75(2), 162. Satheeshababu, B., & Shivakumar, K. (2013). Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches. Indian Journal of Pharmaceutical Sciences, 75(2), 162.
21.
Zurück zum Zitat Shi, Y., et al. (2016). Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. Journal of Materials Science: Materials in Medicine, 27(3), 48. Shi, Y., et al. (2016). Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. Journal of Materials Science: Materials in Medicine, 27(3), 48.
22.
Zurück zum Zitat Eisenbarth, E., et al. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705–5713.CrossRef Eisenbarth, E., et al. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705–5713.CrossRef
23.
Zurück zum Zitat Matsuno, H., et al. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253–1262.CrossRef Matsuno, H., et al. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253–1262.CrossRef
24.
Zurück zum Zitat Braic, M., et al. (2011). Preparation and characterization of biocompatible Nb–C coatings. Thin Solid Films, 519(12), 4064–4068.CrossRef Braic, M., et al. (2011). Preparation and characterization of biocompatible Nb–C coatings. Thin Solid Films, 519(12), 4064–4068.CrossRef
25.
Zurück zum Zitat Xu, Z., et al. (2019). Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: The role of the nonmetal elements. Materials Science and Engineering: C, 96, 166–175.CrossRef Xu, Z., et al. (2019). Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: The role of the nonmetal elements. Materials Science and Engineering: C, 96, 166–175.CrossRef
26.
Zurück zum Zitat Kalisz, M., et al. (2015). Comparison of mechanical and corrosion properties of graphene monolayer on Ti–Al–V and nanometric Nb2O5 layer on Ti–Al–V alloy for dental implants applications. Thin Solid Films, 589, 356–363.CrossRef Kalisz, M., et al. (2015). Comparison of mechanical and corrosion properties of graphene monolayer on Ti–Al–V and nanometric Nb2O5 layer on Ti–Al–V alloy for dental implants applications. Thin Solid Films, 589, 356–363.CrossRef
27.
Zurück zum Zitat He, J., et al. (2015). Killing dental pathogens using antibacterial graphene oxide. ACS Applied Materials & Interfaces, 7(9), 5605–5611.CrossRef He, J., et al. (2015). Killing dental pathogens using antibacterial graphene oxide. ACS Applied Materials & Interfaces, 7(9), 5605–5611.CrossRef
28.
Zurück zum Zitat Li, M., et al. (2014). Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon, 67, 185–197.CrossRef Li, M., et al. (2014). Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon, 67, 185–197.CrossRef
29.
Zurück zum Zitat La, W. G., et al. (2013). Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small, 9(23), 4051–4060.CrossRef La, W. G., et al. (2013). Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small, 9(23), 4051–4060.CrossRef
30.
Zurück zum Zitat Jung, H. S., et al. (2015). Fabrication of gate-tunable graphene devices for scanning tunneling microscopy studies with Coulomb impurities. JoVE (Journal of Visualized Experiments), (101), e52711. Jung, H. S., et al. (2015). Fabrication of gate-tunable graphene devices for scanning tunneling microscopy studies with Coulomb impurities. JoVE (Journal of Visualized Experiments), (101), e52711.
31.
Zurück zum Zitat Schliephake, H., et al. (2005). Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clinical Oral Implants Research, 16(5), 563–569.CrossRef Schliephake, H., et al. (2005). Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clinical Oral Implants Research, 16(5), 563–569.CrossRef
32.
Zurück zum Zitat Youn, Y. H., et al. (2019). Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. Materials Science and Engineering: C, 100, 949.CrossRef Youn, Y. H., et al. (2019). Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. Materials Science and Engineering: C, 100, 949.CrossRef
33.
Zurück zum Zitat de Jonge, L. T., et al. (2008). Organic–inorganic surface modifications for titanium implant surfaces. Pharmaceutical Research, 25(10), 2357–2369.CrossRef de Jonge, L. T., et al. (2008). Organic–inorganic surface modifications for titanium implant surfaces. Pharmaceutical Research, 25(10), 2357–2369.CrossRef
34.
Zurück zum Zitat Ageitos, J., et al. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138.CrossRef Ageitos, J., et al. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138.CrossRef
35.
Zurück zum Zitat Godoy-Gallardo, M., et al. (2016). Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Materials Science and Engineering: C, 59, 524–532.CrossRef Godoy-Gallardo, M., et al. (2016). Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Materials Science and Engineering: C, 59, 524–532.CrossRef
36.
Zurück zum Zitat Sharonova, A., et al. (2019). Surface functionalization of titanium with silver nanoparticles. Journal of Physics: Conference Series. IOP Publishing. Sharonova, A., et al. (2019). Surface functionalization of titanium with silver nanoparticles. Journal of Physics: Conference Series. IOP Publishing.
37.
Zurück zum Zitat Zhao, Q., et al. (2019). Surface functionalization of titanium with zinc/strontium-doped titanium dioxide microporous coating via microarc oxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 16, 149–161.CrossRef Zhao, Q., et al. (2019). Surface functionalization of titanium with zinc/strontium-doped titanium dioxide microporous coating via microarc oxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 16, 149–161.CrossRef
38.
Zurück zum Zitat Ahmad, Z., et al. (2012). Antimicrobial properties of electrically formed elastomeric polyurethane–copper oxide nanocomposites for medical and dental applications. In Methods in enzymology (pp. 87–99). Amsterdam, Netherlands: Elsevier. Ahmad, Z., et al. (2012). Antimicrobial properties of electrically formed elastomeric polyurethane–copper oxide nanocomposites for medical and dental applications. In Methods in enzymology (pp. 87–99). Amsterdam, Netherlands: Elsevier.
39.
Zurück zum Zitat Webster, T. J., & Ejiofor, J. U. (2004). Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 25(19), 4731–4739.CrossRef Webster, T. J., & Ejiofor, J. U. (2004). Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 25(19), 4731–4739.CrossRef
40.
Zurück zum Zitat Bjursten, L. M., et al. (2010). Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(3), 1218–1224. Bjursten, L. M., et al. (2010). Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(3), 1218–1224.
41.
Zurück zum Zitat Tan, A., et al. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38(6), 4421–4435.CrossRef Tan, A., et al. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38(6), 4421–4435.CrossRef
42.
Zurück zum Zitat Goloshchapov, D., et al. (2019). Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites. In Results in Physics (p. 102158). Goloshchapov, D., et al. (2019). Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites. In Results in Physics (p. 102158).
43.
Zurück zum Zitat Braga, N., et al. (2008). From micro to nanocrystalline transition in the diamond formation on porous pure titanium. Diamond and Related Materials, 17(11), 1891–1896.CrossRef Braga, N., et al. (2008). From micro to nanocrystalline transition in the diamond formation on porous pure titanium. Diamond and Related Materials, 17(11), 1891–1896.CrossRef
44.
Zurück zum Zitat Cui, W., Cheng, J., & Liu, Z. (2019). Bio-tribocorrosion behavior of a nanocrystalline TiZrN coating on biomedical titanium alloy. Surface and Coatings Technology, 369, 79.CrossRef Cui, W., Cheng, J., & Liu, Z. (2019). Bio-tribocorrosion behavior of a nanocrystalline TiZrN coating on biomedical titanium alloy. Surface and Coatings Technology, 369, 79.CrossRef
45.
Zurück zum Zitat Louarn, G., et al. (2019). Nanostructured surface coatings for titanium alloy implants. Journal of Materials Research, 34, 1–8.CrossRef Louarn, G., et al. (2019). Nanostructured surface coatings for titanium alloy implants. Journal of Materials Research, 34, 1–8.CrossRef
46.
Zurück zum Zitat McCallion, C., et al. (2016). Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 104, 235–250.CrossRef McCallion, C., et al. (2016). Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 104, 235–250.CrossRef
47.
Zurück zum Zitat Kulshrestha, S., et al. (2014). A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling, 30(10), 1281–1294.CrossRef Kulshrestha, S., et al. (2014). A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling, 30(10), 1281–1294.CrossRef
48.
Zurück zum Zitat Olivares-Navarrete, R., et al. (2011). Biocompatibility of niobium coatings. Coatings, 1(1), 72–87.CrossRef Olivares-Navarrete, R., et al. (2011). Biocompatibility of niobium coatings. Coatings, 1(1), 72–87.CrossRef
49.
Zurück zum Zitat Ramírez, G., et al. (2011). Niobium based coatings for dental implants. Applied Surface Science, 257(7), 2555–2559.CrossRef Ramírez, G., et al. (2011). Niobium based coatings for dental implants. Applied Surface Science, 257(7), 2555–2559.CrossRef
50.
Zurück zum Zitat Manini, N., et al. (2017). Current trends in the physics of nanoscale friction. Advances in Physics: X, 2(3), 569–590. Manini, N., et al. (2017). Current trends in the physics of nanoscale friction. Advances in Physics: X, 2(3), 569–590.
51.
Zurück zum Zitat Mas-Moruno, C., Su, B., & Dalby, M. J. (2019). Multifunctional coatings and nanotopographies: Toward cell instructive and antibacterial implants. Advanced Healthcare Materials, 8(1), 1801103.CrossRef Mas-Moruno, C., Su, B., & Dalby, M. J. (2019). Multifunctional coatings and nanotopographies: Toward cell instructive and antibacterial implants. Advanced Healthcare Materials, 8(1), 1801103.CrossRef
52.
Zurück zum Zitat Das, D. (2019). Nanocrystalline diamond: a high-impact carbon nanomaterial for multifunctional applications including as nanofiller in biopolymeric matrices. In Carbon-based nanofillers and their rubber nanocomposites (pp. 123–181). Amsterdam, Netherlands: Elsevier.CrossRef Das, D. (2019). Nanocrystalline diamond: a high-impact carbon nanomaterial for multifunctional applications including as nanofiller in biopolymeric matrices. In Carbon-based nanofillers and their rubber nanocomposites (pp. 123–181). Amsterdam, Netherlands: Elsevier.CrossRef
Metadaten
Titel
Engineering of Dental Titanium Implants and Their Coating Techniques
verfasst von
Jonathan Wirth
Lobat Tayebi
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-21583-5_6

Neuer Inhalt