Skip to main content

2014 | OriginalPaper | Buchkapitel

23. Engineering of Mesoporous Silica Nanoparticles for In Vivo Cancer Imaging and Therapy

verfasst von : Feng Chen, Weibo Cai, Hao Hong

Erschienen in: Engineering in Translational Medicine

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mesoporous silica nanoparticles (MSNs) possess many attractive properties, such as good biocompatibility, large surface area, high pore volume, uniform and tunable pore size, and have been intensively investigated as novel drug delivery systems for more than 10 years. Although in vitro imaging and therapeutic applications by using MSNs have been reached a great success, transferring these to the in vivo level is still facing big challenges and is now under intensive investigations. In this chapter, we summarized the very recent progress and future directions of engineering MSNs for biological imaging and therapy in vivo.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 44(10):999–1008. doi:10.1021/ar200094a Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 44(10):999–1008. doi:10.​1021/​ar200094a
4.
Zurück zum Zitat Ma X, Zhao Y, Liang X-J (2011) Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 44(10):1114–1122. doi:10.1021/ar2000056 Ma X, Zhao Y, Liang X-J (2011) Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 44(10):1114–1122. doi:10.​1021/​ar2000056
6.
Zurück zum Zitat Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44(10):914–924. doi:10.1021/ar200061q Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44(10):914–924. doi:10.​1021/​ar200061q
7.
Zurück zum Zitat Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40(7):3391–3404. doi:10.1039/c0cs00180e Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40(7):3391–3404. doi:10.​1039/​c0cs00180e
9.
Zurück zum Zitat Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547. doi:10.1039/c2cs35342c Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547. doi:10.​1039/​c2cs35342c
10.
Zurück zum Zitat Wang F, Banerjee D, Liu YS, Chen XY, Liu XG (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854. doi:10.1039/c0an00144a Wang F, Banerjee D, Liu YS, Chen XY, Liu XG (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854. doi:10.​1039/​c0an00144a
11.
12.
Zurück zum Zitat Ambrogio MW, Thomas CR, Zhao Y-L, Zink JI, Stoddart JF (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44(10):903–913. doi:10.1021/ar200018x Ambrogio MW, Thomas CR, Zhao Y-L, Zink JI, Stoddart JF (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44(10):903–913. doi:10.​1021/​ar200018x
13.
Zurück zum Zitat Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater (Deerfield Beach, Fla) 24(12):1504–1534. doi:10.1002/adma.201104763 Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater (Deerfield Beach, Fla) 24(12):1504–1534. doi:10.​1002/​adma.​201104763
14.
Zurück zum Zitat Vivero-Escoto JL, Huxford-Phillips RC, Lin W (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41(7):2673–2685. doi:10.1039/c2cs15229k Vivero-Escoto JL, Huxford-Phillips RC, Lin W (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41(7):2673–2685. doi:10.​1039/​c2cs15229k
15.
Zurück zum Zitat Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41(9):3679–3698. doi:10.1039/c2cs15308d Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41(9):3679–3698. doi:10.​1039/​c2cs15308d
16.
Zurück zum Zitat Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, Wolchok J, Larson SM, Wiesner U, Bradbury MS (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121(7):2768–2780. doi:10.1172/jci45600 Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, Wolchok J, Larson SM, Wiesner U, Bradbury MS (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121(7):2768–2780. doi:10.​1172/​jci45600
17.
Zurück zum Zitat Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2000) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311. doi:10.1021/cm0011559 Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2000) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311. doi:10.​1021/​cm0011559
18.
Zurück zum Zitat Hoffmann F, Cornelius M, Morell J, Froba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251. doi:10.1002/anie.200503075 Hoffmann F, Cornelius M, Morell J, Froba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251. doi:10.​1002/​anie.​200503075
19.
Zurück zum Zitat Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles: structural design and applications. J Mater Chem 20(37):7924–7937. doi:10.1039/c0jm00554a Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles: structural design and applications. J Mater Chem 20(37):7924–7937. doi:10.​1039/​c0jm00554a
20.
Zurück zum Zitat Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Linden M (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3(1):197–206. doi:10.1021/nn800781r Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Linden M (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3(1):197–206. doi:10.​1021/​nn800781r
21.
Zurück zum Zitat Ferris DP, Lu J, Gothard C, Yanes R, Thomas CR, Olsen JC, Stoddart JF, Tamanoi F, Zink JI (2011) Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 7(13):1816–1826. doi:10.1002/smll.201002300 Ferris DP, Lu J, Gothard C, Yanes R, Thomas CR, Olsen JC, Stoddart JF, Tamanoi F, Zink JI (2011) Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 7(13):1816–1826. doi:10.​1002/​smll.​201002300
22.
Zurück zum Zitat Zhu CL, Song XY, Zhou WH, Yang HH, Wen YH, Wang XR (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J Mater Chem 19(41):7765–7770. doi:10.1039/b907978e Zhu CL, Song XY, Zhou WH, Yang HH, Wen YH, Wang XR (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J Mater Chem 19(41):7765–7770. doi:10.​1039/​b907978e
23.
Zurück zum Zitat Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY (2009) Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 19(32):5737–5743. doi:10.1039/b905158a Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY (2009) Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 19(32):5737–5743. doi:10.​1039/​b905158a
24.
Zurück zum Zitat Wang K, He X, Yang X, Shi H (2013) Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res. doi:10.1021/ar3001525 Wang K, He X, Yang X, Shi H (2013) Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res. doi:10.​1021/​ar3001525
26.
Zurück zum Zitat Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8(1):369–373. doi:10.1021/nl0727415 Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8(1):369–373. doi:10.​1021/​nl0727415
27.
Zurück zum Zitat Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J (2012) Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chemistry 18(8):2335–2341. doi:10.1002/chem.201102599 Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J (2012) Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chemistry 18(8):2335–2341. doi:10.​1002/​chem.​201102599
28.
Zurück zum Zitat Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580–1585. doi:10.1038/nm.2933 Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580–1585. doi:10.​1038/​nm.​2933
29.
Zurück zum Zitat Sathe TR, Agrawal A, Nie S (2006) Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem 78(16):5627–5632. doi:10.1021/ac0610309 Sathe TR, Agrawal A, Nie S (2006) Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem 78(16):5627–5632. doi:10.​1021/​ac0610309
30.
Zurück zum Zitat Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689. doi:10.1021/ja0565875 Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689. doi:10.​1021/​ja0565875
31.
Zurück zum Zitat Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25(23):3144–3176. doi:10.1002/adma.201205292 Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25(23):3144–3176. doi:10.​1002/​adma.​201205292
32.
Zurück zum Zitat Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605. doi:10.1039/c1cs15246g Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605. doi:10.​1039/​c1cs15246g
33.
Zurück zum Zitat Inagaki S, Fukushima Y, Kuroda K (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc, Chem Commun 8:680–682. doi:10.1039/c39930000680 Inagaki S, Fukushima Y, Kuroda K (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc, Chem Commun 8:680–682. doi:10.​1039/​c39930000680
34.
Zurück zum Zitat Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. doi:10.1021/ar3000986 Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. doi:10.​1021/​ar3000986
35.
Zurück zum Zitat Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860. doi:10.1021/cr068020s Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860. doi:10.​1021/​cr068020s
36.
Zurück zum Zitat Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48(6):18N–21N Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48(6):18N–21N
38.
Zurück zum Zitat Chen PJ, Hu SH, Fan CT, Li ML, Chen YY, Chen SY, Liu DM (2013) A novel multifunctional nano-platform with enhanced anti-cancer and photoacoustic imaging modalities using gold-nanorod-filled silica nanobeads. Chem Commun 49(9):892–894. doi:10.1039/c2cc37702k Chen PJ, Hu SH, Fan CT, Li ML, Chen YY, Chen SY, Liu DM (2013) A novel multifunctional nano-platform with enhanced anti-cancer and photoacoustic imaging modalities using gold-nanorod-filled silica nanobeads. Chem Commun 49(9):892–894. doi:10.​1039/​c2cc37702k
39.
Zurück zum Zitat Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896. doi:10.1021/nn800072t Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896. doi:10.​1021/​nn800072t
40.
Zurück zum Zitat Pan J, Wan D, Gong J (2011) PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging. Chem Commun 47(12):3442–3444. doi:10.1039/c0cc05520d Pan J, Wan D, Gong J (2011) PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging. Chem Commun 47(12):3442–3444. doi:10.​1039/​c0cc05520d
41.
Zurück zum Zitat Feng J, Song SY, Deng RP, Fan WQ, Zhang HJ (2010) Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. Langmuir 26(5):3596–3600. doi:10.1021/la903008z Feng J, Song SY, Deng RP, Fan WQ, Zhang HJ (2010) Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. Langmuir 26(5):3596–3600. doi:10.​1021/​la903008z
42.
Zurück zum Zitat Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky GD (2012) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12(1):61–67. doi:10.1021/nl202949y Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky GD (2012) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12(1):61–67. doi:10.​1021/​nl202949y
43.
Zurück zum Zitat Morelli C, Maris P, Sisci D, Perrotta E, Brunelli E, Perrotta I, Panno ML, Tagarelli A, Versace C, Casula MF, Testa F, Ando S, Nagy JB, Pasqua L (2011) PEG-templated mesoporous silica nanoparticles exclusively target cancer cells. Nanoscale 3(8):3198–3207. doi:10.1039/c1nr10253b Morelli C, Maris P, Sisci D, Perrotta E, Brunelli E, Perrotta I, Panno ML, Tagarelli A, Versace C, Casula MF, Testa F, Ando S, Nagy JB, Pasqua L (2011) PEG-templated mesoporous silica nanoparticles exclusively target cancer cells. Nanoscale 3(8):3198–3207. doi:10.​1039/​c1nr10253b
44.
Zurück zum Zitat Roggers RA, Lin VS, Trewyn BG (2012) Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and HeLa and normal mouse liver cell biocompatibility and cellular internalization. Mol Pharm 9(9):2770–2777. doi:10.1021/mp200613y Roggers RA, Lin VS, Trewyn BG (2012) Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and HeLa and normal mouse liver cell biocompatibility and cellular internalization. Mol Pharm 9(9):2770–2777. doi:10.​1021/​mp200613y
45.
Zurück zum Zitat Hocine O, Gary-Bobo M, Brevet D, Maynadier M, Fontanel S, Raehm L, Richeter S, Loock B, Couleaud P, Frochot C, Charnay C, Derrien G, Smaihi M, Sahmoune A, Morere A, Maillard P, Garcia M, Durand JO (2010) Silicalites and mesoporous silica nanoparticles for photodynamic therapy. Int J Pharm 402(1–2):221–230. doi:10.1016/j.ijpharm.2010.10.004 Hocine O, Gary-Bobo M, Brevet D, Maynadier M, Fontanel S, Raehm L, Richeter S, Loock B, Couleaud P, Frochot C, Charnay C, Derrien G, Smaihi M, Sahmoune A, Morere A, Maillard P, Garcia M, Durand JO (2010) Silicalites and mesoporous silica nanoparticles for photodynamic therapy. Int J Pharm 402(1–2):221–230. doi:10.​1016/​j.​ijpharm.​2010.​10.​004
46.
Zurück zum Zitat Lai J, Shah BP, Garfunkel E, Lee KB (2013) Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 7(3):2741–2750. doi:10.1021/nn400199t Lai J, Shah BP, Garfunkel E, Lee KB (2013) Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 7(3):2741–2750. doi:10.​1021/​nn400199t
47.
Zurück zum Zitat Wu S, Li Z, Han J, Han S (2011) Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity. Chem Commun 47(40):11276–11278. doi:10.1039/c1cc14627k Wu S, Li Z, Han J, Han S (2011) Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity. Chem Commun 47(40):11276–11278. doi:10.​1039/​c1cc14627k
48.
Zurück zum Zitat He Q, Zhang Z, Gao F, Li Y, Shi J (2011) In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 7(2):271–280. doi:10.1002/smll.201001459 He Q, Zhang Z, Gao F, Li Y, Shi J (2011) In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 7(2):271–280. doi:10.​1002/​smll.​201001459
49.
Zurück zum Zitat Huang X, Zhang F, Lee S, Swierczewska M, Kiesewetter DO, Lang L, Zhang G, Zhu L, Gao H, Choi HS, Niu G, Chen X (2012) Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials 33(17):4370–4378. doi:10.1016/j.biomaterials.2012.02.060 Huang X, Zhang F, Lee S, Swierczewska M, Kiesewetter DO, Lang L, Zhang G, Zhu L, Gao H, Choi HS, Niu G, Chen X (2012) Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials 33(17):4370–4378. doi:10.​1016/​j.​biomaterials.​2012.​02.​060
50.
Zurück zum Zitat Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo LW (2009) Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv Funct Mater 19(2):215–222. doi:DOI10.1002/adfm.200800753 Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, Chen CT, Mou CY, Yang CS, Lo LW (2009) Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv Funct Mater 19(2):215–222. doi:DOI10.​1002/​adfm.​200800753
51.
52.
Zurück zum Zitat Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. doi:10.1038/nmeth.1248 Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. doi:10.​1038/​nmeth.​1248
53.
Zurück zum Zitat Gao X, Dave SR (2007) Quantum dots for cancer molecular imaging. Adv Exp Med Biol 620:57–73 Gao X, Dave SR (2007) Quantum dots for cancer molecular imaging. Adv Exp Med Biol 620:57–73
54.
Zurück zum Zitat Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354. doi:10.1039/b915139g Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354. doi:10.​1039/​b915139g
55.
Zurück zum Zitat Derfus AM, Chan WCW, Bhatia SN (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18. doi:10.1021/nl0347334 Derfus AM, Chan WCW, Bhatia SN (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18. doi:10.​1021/​nl0347334
57.
Zurück zum Zitat Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S-T, Liu Z (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 50(32):7385–7390. doi:10.1002/anie.201101447 Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S-T, Liu Z (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 50(32):7385–7390. doi:10.​1002/​anie.​201101447
59.
Zurück zum Zitat Ju Q, Tu D, Liu Y, Li R, Zhu H, Chen J, Chen Z, Huang M, Chen X (2012) Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc 134(2):1323–1330. doi:10.1021/ja2102604 Ju Q, Tu D, Liu Y, Li R, Zhu H, Chen J, Chen Z, Huang M, Chen X (2012) Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc 134(2):1323–1330. doi:10.​1021/​ja2102604
60.
Zurück zum Zitat Wu S, Han G, Milliron DJ, Aloni S, Altoe V, Talapin DV, Cohen BE, Schuck PJ (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106(27):10917–10921. doi:10.1073/pnas.0904792106 Wu S, Han G, Milliron DJ, Aloni S, Altoe V, Talapin DV, Cohen BE, Schuck PJ (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106(27):10917–10921. doi:10.​1073/​pnas.​0904792106
61.
Zurück zum Zitat Cheng L, Wang C, Liu Z (2012) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5(1):23–37. doi:10.1039/c2nr32311g Cheng L, Wang C, Liu Z (2012) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5(1):23–37. doi:10.​1039/​c2nr32311g
62.
Zurück zum Zitat Park YI, Kim JH, Lee KT, Jeon KS, Bin Na H, Yu JH, Kim HM, Lee N, Choi SH, Baik SI, Kim H, Park SP, Park BJ, Kim YW, Lee SH, Yoon SY, Song IC, Moon WK, Suh YD, Hyeon T (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21(44):4467–4471. doi:DOI 10.1002/adma.200901356 Park YI, Kim JH, Lee KT, Jeon KS, Bin Na H, Yu JH, Kim HM, Lee N, Choi SH, Baik SI, Kim H, Park SP, Park BJ, Kim YW, Lee SH, Yoon SY, Song IC, Moon WK, Suh YD, Hyeon T (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21(44):4467–4471. doi:DOI 10.​1002/​adma.​200901356
64.
Zurück zum Zitat Nam SH, Bae YM, Park YI, Kim JH, Kim HM, Choi JS, Lee KT, Hyeon T, Suh YD (2011) Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed 50(27):6093–6097. doi:10.1002/anie.201007979 Nam SH, Bae YM, Park YI, Kim JH, Kim HM, Choi JS, Lee KT, Hyeon T, Suh YD (2011) Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed 50(27):6093–6097. doi:10.​1002/​anie.​201007979
65.
Zurück zum Zitat Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F (2009) High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 81(21):8687–8694. doi:10.1021/ac901960d Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F (2009) High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 81(21):8687–8694. doi:10.​1021/​ac901960d
66.
Zurück zum Zitat Chen F, Bu WB, Zhang SJ, Liu XH, Liu JN, Xing HY, Xiao QF, Zhou LP, Peng WJ, Wang LZ, Shi JL (2011) Positive and negative lattice shielding effects co-existing in Gd(III) ion doped bifunctional upconversion nanoprobes. Adv Funct Mater 21(22):4285–4294. doi:DOI10.1002/adfm.201101663 Chen F, Bu WB, Zhang SJ, Liu XH, Liu JN, Xing HY, Xiao QF, Zhou LP, Peng WJ, Wang LZ, Shi JL (2011) Positive and negative lattice shielding effects co-existing in Gd(III) ion doped bifunctional upconversion nanoprobes. Adv Funct Mater 21(22):4285–4294. doi:DOI10.​1002/​adfm.​201101663
67.
Zurück zum Zitat Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN (2009) Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater 19(6):853–859. doi:10.1002/adfm.200800765 Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN (2009) Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater 19(6):853–859. doi:10.​1002/​adfm.​200800765
68.
Zurück zum Zitat Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F (2010) Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31(12):3287–3295. doi:10.1016/j.biomaterials.2010.01.040 Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F (2010) Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31(12):3287–3295. doi:10.​1016/​j.​biomaterials.​2010.​01.​040
69.
Zurück zum Zitat He M, Huang P, Zhang CL, Hu HY, Bao CC, Gao G, He R, Cui DX (2011) Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater 21(23):4470–4477. doi:DOI10.1002/adfm.201101040 He M, Huang P, Zhang CL, Hu HY, Bao CC, Gao G, He R, Cui DX (2011) Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater 21(23):4470–4477. doi:DOI10.​1002/​adfm.​201101040
70.
Zurück zum Zitat Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012) A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chem Int Ed 51(6):1437–1442. doi:10.1002/anie.201106686 Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012) A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chem Int Ed 51(6):1437–1442. doi:10.​1002/​anie.​201106686
71.
74.
Zurück zum Zitat Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212(3):609–614 Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212(3):609–614
75.
Zurück zum Zitat Villaraza AJ, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110(5):2921–2959. doi:10.1021/cr900232t Villaraza AJ, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110(5):2921–2959. doi:10.​1021/​cr900232t
76.
Zurück zum Zitat Huang CC, Tsai CY, Sheu HS, Chuang KY, Su CH, Jeng US, Cheng FY, Lei HY, Yeh CS (2011) Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd(3) + - chelated mesoporous silica shells. ACS Nano 5(5):3905–3916. doi:10.1021/nn200306g Huang CC, Tsai CY, Sheu HS, Chuang KY, Su CH, Jeng US, Cheng FY, Lei HY, Yeh CS (2011) Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd(3) + - chelated mesoporous silica shells. ACS Nano 5(5):3905–3916. doi:10.​1021/​nn200306g
77.
Zurück zum Zitat Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441. doi:10.1002/anie.200802469 Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441. doi:10.​1002/​anie.​200802469
78.
Zurück zum Zitat Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, Park M, Lee N, McMahon MT, Quinones-Hinojosa A, Bulte JW, Hyeon T, Gilad AA (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133(9):2955–2961. doi:10.1021/ja1084095 Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, Park M, Lee N, McMahon MT, Quinones-Hinojosa A, Bulte JW, Hyeon T, Gilad AA (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133(9):2955–2961. doi:10.​1021/​ja1084095
79.
Zurück zum Zitat Peng YK, Lai CW, Liu CL, Chen HC, Hsiao YH, Liu WL, Tang KC, Chi Y, Hsiao JK, Lim KE, Liao HE, Shyue JJ, Chou PT (2011) A new and facile method to prepare uniform hollow MnO/functionalized mSiO(2) core/shell nanocomposites. ACS Nano 5(5):4177–4187. doi:10.1021/nn200928r Peng YK, Lai CW, Liu CL, Chen HC, Hsiao YH, Liu WL, Tang KC, Chi Y, Hsiao JK, Lim KE, Liao HE, Shyue JJ, Chou PT (2011) A new and facile method to prepare uniform hollow MnO/functionalized mSiO(2) core/shell nanocomposites. ACS Nano 5(5):4177–4187. doi:10.​1021/​nn200928r
80.
Zurück zum Zitat Taylor KM, Kim JS, Rieter WJ, An H, Lin W (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130(7):2154–2155. doi:10.1021/ja710193c Taylor KM, Kim JS, Rieter WJ, An H, Lin W (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130(7):2154–2155. doi:10.​1021/​ja710193c
81.
Zurück zum Zitat Shao YZ, Liu LZ, Song SQ, Cao RH, Liu H, Cui CY, Li X, Bie MJ, Li L (2011) A novel one-step synthesis of Gd3 + -incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent. Contrast Media Mol Imaging 6(2):110–118. doi:10.1002/cmmi.412 Shao YZ, Liu LZ, Song SQ, Cao RH, Liu H, Cui CY, Li X, Bie MJ, Li L (2011) A novel one-step synthesis of Gd3 + -incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent. Contrast Media Mol Imaging 6(2):110–118. doi:10.​1002/​cmmi.​412
82.
Zurück zum Zitat Vivero-Escoto JL, Taylor-Pashow KM, Huxford RC, Della Rocca J, Okoruwa C, An H, Lin W, Lin W (2011) Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 7(24):3519–3528. doi:10.1002/smll.201100521 Vivero-Escoto JL, Taylor-Pashow KM, Huxford RC, Della Rocca J, Okoruwa C, An H, Lin W, Lin W (2011) Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 7(24):3519–3528. doi:10.​1002/​smll.​201100521
83.
Zurück zum Zitat Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J (2010) Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4(10):6001–6013. doi:10.1021/nn1015117 Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J (2010) Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4(10):6001–6013. doi:10.​1021/​nn1015117
84.
Zurück zum Zitat Xuan S, Wang F, Lai JM, Sham KW, Wang YX, Lee SF, Yu JC, Cheng CH, Leung KC (2011) Synthesis of biocompatible, mesoporous Fe(3)O(4) nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl Mater Interfaces 3(2):237–244. doi:10.1021/am1012358 Xuan S, Wang F, Lai JM, Sham KW, Wang YX, Lee SF, Yu JC, Cheng CH, Leung KC (2011) Synthesis of biocompatible, mesoporous Fe(3)O(4) nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl Mater Interfaces 3(2):237–244. doi:10.​1021/​am1012358
85.
Zurück zum Zitat Hsiao JK, Tsai CP, Chung TH, Hung Y, Yao M, Liu HM, Mou CY, Yang CS, Chen YC, Huang DM (2008) Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 4(9):1445–1452. doi:10.1002/smll.200701316 Hsiao JK, Tsai CP, Chung TH, Hung Y, Yao M, Liu HM, Mou CY, Yang CS, Chen YC, Huang DM (2008) Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 4(9):1445–1452. doi:10.​1002/​smll.​200701316
86.
Zurück zum Zitat Liu HM, Wu SH, Lu CW, Yao M, Hsiao JK, Hung Y, Lin YS, Mou CY, Yang CS, Huang DM, Chen YC (2008) Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small 4(5):619–626. doi:10.1002/smll.200700493 Liu HM, Wu SH, Lu CW, Yao M, Hsiao JK, Hung Y, Lin YS, Mou CY, Yang CS, Huang DM, Chen YC (2008) Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small 4(5):619–626. doi:10.​1002/​smll.​200700493
87.
Zurück zum Zitat Shen Y, Shao Y, He H, Tan Y, Tian X, Xie F, Li L (2013) Gadolinium(3 +)-doped mesoporous silica nanoparticles as a potential magnetic resonance tracer for monitoring the migration of stem cells in vivo. Int J Nanomed 8:119–127. doi:10.2147/ijn.s38213 Shen Y, Shao Y, He H, Tan Y, Tian X, Xie F, Li L (2013) Gadolinium(3 +)-doped mesoporous silica nanoparticles as a potential magnetic resonance tracer for monitoring the migration of stem cells in vivo. Int J Nanomed 8:119–127. doi:10.​2147/​ijn.​s38213
88.
Zurück zum Zitat Yeh CS, Su CH, Ho WY, Huang CC, Chang JC, Chien YH, Hung ST, Liau MC, Ho HY (2013) Tumor targeting and MR imaging with lipophilic cyanine-mediated near-infrared responsive porous Gd silicate nanoparticles. Biomaterials 34(22):5677–5688. doi:10.1016/j.biomaterials.2013.04.020 Yeh CS, Su CH, Ho WY, Huang CC, Chang JC, Chien YH, Hung ST, Liau MC, Ho HY (2013) Tumor targeting and MR imaging with lipophilic cyanine-mediated near-infrared responsive porous Gd silicate nanoparticles. Biomaterials 34(22):5677–5688. doi:10.​1016/​j.​biomaterials.​2013.​04.​020
89.
Zurück zum Zitat Huang X, Zhang F, Wang H, Niu G, Choi KY, Swierczewska M, Zhang G, Gao H, Wang Z, Zhu L, Choi HS, Lee S, Chen X (2013) Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials 34(7):1772–1780. doi:10.1016/j.biomaterials.2012.11.032 Huang X, Zhang F, Wang H, Niu G, Choi KY, Swierczewska M, Zhang G, Gao H, Wang Z, Zhu L, Choi HS, Lee S, Chen X (2013) Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials 34(7):1772–1780. doi:10.​1016/​j.​biomaterials.​2012.​11.​032
90.
Zurück zum Zitat Carniato F, Tei L, Arrais A, Marchese L, Botta M (2013) Selective anchoring of Gd(III) chelates on the external surface of organo-modified mesoporous silica nanoparticles: a new chemical strategy to enhance relaxivity. Chemistry 19(4):1421–1428. doi:10.1002/chem.201202670 Carniato F, Tei L, Arrais A, Marchese L, Botta M (2013) Selective anchoring of Gd(III) chelates on the external surface of organo-modified mesoporous silica nanoparticles: a new chemical strategy to enhance relaxivity. Chemistry 19(4):1421–1428. doi:10.​1002/​chem.​201202670
91.
Zurück zum Zitat Shao Y, Tian X, Hu W, Zhang Y, Liu H, He H, Shen Y, Xie F, Li L (2012) The properties of Gd2O3-assembled silica nanocomposite targeted nanoprobes and their application in MRI. Biomaterials 33(27):6438–6446. doi:10.1016/j.biomaterials.2012.05.065 Shao Y, Tian X, Hu W, Zhang Y, Liu H, He H, Shen Y, Xie F, Li L (2012) The properties of Gd2O3-assembled silica nanocomposite targeted nanoprobes and their application in MRI. Biomaterials 33(27):6438–6446. doi:10.​1016/​j.​biomaterials.​2012.​05.​065
92.
Zurück zum Zitat Chen Y, Yin Q, Ji X, Zhang S, Chen H, Zheng Y, Sun Y, Qu H, Wang Z, Li Y, Wang X, Zhang K, Zhang L, Shi J (2012) Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33(29):7126–7137. doi:10.1016/j.biomaterials.2012.06.059 Chen Y, Yin Q, Ji X, Zhang S, Chen H, Zheng Y, Sun Y, Qu H, Wang Z, Li Y, Wang X, Zhang K, Zhang L, Shi J (2012) Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33(29):7126–7137. doi:10.​1016/​j.​biomaterials.​2012.​06.​059
93.
Zurück zum Zitat Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895. doi:10.1038/nmat1251 Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895. doi:10.​1038/​nmat1251
94.
Zurück zum Zitat Zhang T, Ge J, Hu Y, Yin Y (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7(10):3203–3207. doi:10.1021/nl071928t Zhang T, Ge J, Hu Y, Yin Y (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7(10):3203–3207. doi:10.​1021/​nl071928t
95.
Zurück zum Zitat Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, Martini A, Toprak MS, Muller RN, Muhammed M (2012) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7(5):460–468. doi:10.1002/cmmi.1473 Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, Martini A, Toprak MS, Muller RN, Muhammed M (2012) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7(5):460–468. doi:10.​1002/​cmmi.​1473
96.
Zurück zum Zitat Gandhi S, Sethuraman S, Krishnan UM (2012) Synthesis, characterization and biocompatibility evaluation of iron oxide incorporated magnetic mesoporous silica. Dalton Trans 41(40):12530–12537. doi:10.1039/c2dt30853c Gandhi S, Sethuraman S, Krishnan UM (2012) Synthesis, characterization and biocompatibility evaluation of iron oxide incorporated magnetic mesoporous silica. Dalton Trans 41(40):12530–12537. doi:10.​1039/​c2dt30853c
97.
Zurück zum Zitat Zhang L, Wang Y, Tang Y, Jiao Z, Xie C, Zhang H, Gu P, Wei X, Yang GY, Gu H, Zhang C (2013) High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model. Nanoscale 5(10):4506–4516. doi:10.1039/c3nr00119a Zhang L, Wang Y, Tang Y, Jiao Z, Xie C, Zhang H, Gu P, Wei X, Yang GY, Gu H, Zhang C (2013) High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model. Nanoscale 5(10):4506–4516. doi:10.​1039/​c3nr00119a
98.
Zurück zum Zitat Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J (2013) Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials 34(8):2057–2068. doi:10.1016/j.biomaterials.2012.11.044 Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J (2013) Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials 34(8):2057–2068. doi:10.​1016/​j.​biomaterials.​2012.​11.​044
99.
Zurück zum Zitat Wang X, Chen H, Chen Y, Ma M, Zhang K, Li F, Zheng Y, Zeng D, Wang Q, Shi J (2012) Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv Mater 24(6):785–791. doi:10.1002/adma.201104033 Wang X, Chen H, Chen Y, Ma M, Zhang K, Li F, Zheng Y, Zeng D, Wang Q, Shi J (2012) Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv Mater 24(6):785–791. doi:10.​1002/​adma.​201104033
100.
Zurück zum Zitat Luo T, Huang P, Gao G, Shen G, Fu S, Cui D, Zhou C, Ren Q (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19(18):17030–17039 Luo T, Huang P, Gao G, Shen G, Fu S, Cui D, Zhou C, Ren Q (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19(18):17030–17039
101.
Zurück zum Zitat Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5(5):4131–4144. doi:10.1021/nn200809t Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5(5):4131–4144. doi:10.​1021/​nn200809t
102.
Zurück zum Zitat Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16):1794–1805. doi:10.1002/smll.201000538 Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16):1794–1805. doi:10.​1002/​smll.​201000538
103.
Zurück zum Zitat Lu J, Li Z, Zink JI, Tamanoi F (2012) In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 8(2):212–220. doi:10.1016/j.nano.2011.06.002 Lu J, Li Z, Zink JI, Tamanoi F (2012) In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 8(2):212–220. doi:10.​1016/​j.​nano.​2011.​06.​002
104.
Zurück zum Zitat Wang LG, Liu XM, Kreis W, Budman DR (1999) The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 44(5):355–361 Wang LG, Liu XM, Kreis W, Budman DR (1999) The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 44(5):355–361
105.
Zurück zum Zitat Montero A, Fossella F, Hortobagyi G, Valero V (2005) Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol 6(4):229–239. doi:10.1016/s1470-2045(05)70094-2 Montero A, Fossella F, Hortobagyi G, Valero V (2005) Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol 6(4):229–239. doi:10.​1016/​s1470-2045(05)70094-2
106.
Zurück zum Zitat Li L, Tang F, Liu H, Liu T, Hao N, Chen D, Teng X, He J (2010) In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 4(11):6874–6882. doi:10.1021/nn100918a Li L, Tang F, Liu H, Liu T, Hao N, Chen D, Teng X, He J (2010) In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 4(11):6874–6882. doi:10.​1021/​nn100918a
107.
Zurück zum Zitat Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281. doi:10.3322/caac.20114 Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281. doi:10.​3322/​caac.​20114
108.
Zurück zum Zitat Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Blanchard-Desce M, Morere A, Garcia M, Durand JO, Raehm L (2011) Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew Chem Int Ed 50(48):11425–11429. doi:10.1002/anie.201104765 Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Blanchard-Desce M, Morere A, Garcia M, Durand JO, Raehm L (2011) Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew Chem Int Ed 50(48):11425–11429. doi:10.​1002/​anie.​201104765
109.
110.
Zurück zum Zitat Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, Achilefu S, Gu Y (2012) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. doi:10.1021/nn304872n Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, Achilefu S, Gu Y (2012) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. doi:10.​1021/​nn304872n
111.
Zurück zum Zitat Shan JN, Budijono SJ, Hu GH, Yao N, Kang YB, Ju YG, Prud’homme RK (2011) Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv Funct Mater 21(13):2488–2495. doi:DOI10.1002/adfm.201002516 Shan JN, Budijono SJ, Hu GH, Yao N, Kang YB, Ju YG, Prud’homme RK (2011) Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv Funct Mater 21(13):2488–2495. doi:DOI10.​1002/​adfm.​201002516
112.
Zurück zum Zitat Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, Lee N, Choi Y, Park W, Ling D, Na K, Moon WK, Choi SH, Park HS, Yoon SY, Suh YD, Lee SH, Hyeon T (2012) Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 24(42):5755–5761. doi:10.1002/adma.201202433 Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, Lee N, Choi Y, Park W, Ling D, Na K, Moon WK, Choi SH, Park HS, Yoon SY, Suh YD, Lee SH, Hyeon T (2012) Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 24(42):5755–5761. doi:10.​1002/​adma.​201202433
114.
Zurück zum Zitat Zhao Z, Han Y, Lin C, Hu D, Wang F, Chen X, Chen Z, Zheng N (2012) Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells. Chem Asian J 7(4):830–837. doi:10.1002/asia.201100879 Zhao Z, Han Y, Lin C, Hu D, Wang F, Chen X, Chen Z, Zheng N (2012) Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells. Chem Asian J 7(4):830–837. doi:10.​1002/​asia.​201100879
115.
116.
Zurück zum Zitat Ungun B, Prud’homme RK, Budijon SJ, Shan J, Lim SF, Ju Y, Austin R (2009) Nanofabricated upconversion nanoparticles for photodynamic therapy. Opt Express 17(1):80–86 Ungun B, Prud’homme RK, Budijon SJ, Shan J, Lim SF, Ju Y, Austin R (2009) Nanofabricated upconversion nanoparticles for photodynamic therapy. Opt Express 17(1):80–86
117.
Zurück zum Zitat Qian HS, Guo HC, Ho PC, Mahendran R, Zhang Y (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5(20):2285–2290. doi:10.1002/smll.200900692 Qian HS, Guo HC, Ho PC, Mahendran R, Zhang Y (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5(20):2285–2290. doi:10.​1002/​smll.​200900692
118.
Zurück zum Zitat Chen F, Zhang S, Bu W, Chen Y, Xiao Q, Liu J, Xing H, Zhou L, Peng W, Shi J (2012) A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chemistry 18(23):7082–7090. doi:10.1002/chem.201103611 Chen F, Zhang S, Bu W, Chen Y, Xiao Q, Liu J, Xing H, Zhou L, Peng W, Shi J (2012) A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chemistry 18(23):7082–7090. doi:10.​1002/​chem.​201103611
119.
Zurück zum Zitat Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952 Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952
120.
Zurück zum Zitat Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719. doi:10.1038/nchembio839 Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719. doi:10.​1038/​nchembio839
121.
Zurück zum Zitat Na HK, Kim MH, Park K, Ryoo SR, Lee KE, Jeon H, Ryoo R, Hyeon C, Min DH (2012) Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small 8(11):1752–1761. doi:10.1002/smll.201200028 Na HK, Kim MH, Park K, Ryoo SR, Lee KE, Jeon H, Ryoo R, Hyeon C, Min DH (2012) Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small 8(11):1752–1761. doi:10.​1002/​smll.​201200028
122.
Zurück zum Zitat Schmitz AC, Gianfelice D, Daniel BL, Mali WP, van den Bosch MA (2008) Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions. Eur Radiol 18(7):1431–1441. doi:10.1007/s00330-008-0906-0 Schmitz AC, Gianfelice D, Daniel BL, Mali WP, van den Bosch MA (2008) Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions. Eur Radiol 18(7):1431–1441. doi:10.​1007/​s00330-008-0906-0
123.
Zurück zum Zitat Chen Y, Chen H, Sun Y, Zheng Y, Zeng D, Li F, Zhang S, Wang X, Zhang K, Ma M, He Q, Zhang L, Shi J (2011) Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem Int Ed 50(52):12505–12509. doi:10.1002/anie.201106180 Chen Y, Chen H, Sun Y, Zheng Y, Zeng D, Li F, Zhang S, Wang X, Zhang K, Ma M, He Q, Zhang L, Shi J (2011) Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem Int Ed 50(52):12505–12509. doi:10.​1002/​anie.​201106180
124.
Zurück zum Zitat Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM (2011) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine 6:2963–2979. doi:10.2147/ijn.s16923 Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM (2011) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine 6:2963–2979. doi:10.​2147/​ijn.​s16923
125.
Zurück zum Zitat Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WCW (2008) Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 20(20):3832–3838. doi:10.1002/adma.200800921 Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WCW (2008) Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 20(20):3832–3838. doi:10.​1002/​adma.​200800921
126.
Zurück zum Zitat Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24(11):1418–1423. doi:10.1002/adma.201104714 Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24(11):1418–1423. doi:10.​1002/​adma.​201104714
127.
Zurück zum Zitat Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed 50(4):891–895. doi:10.1002/anie.201002820 Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed 50(4):891–895. doi:10.​1002/​anie.​201002820
128.
Zurück zum Zitat Ma M, Chen H, Chen Y, Wang X, Chen F, Cui X, Shi J (2012) Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33(3):989–998. doi:10.1016/j.biomaterials.2011.10.017 Ma M, Chen H, Chen Y, Wang X, Chen F, Cui X, Shi J (2012) Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33(3):989–998. doi:10.​1016/​j.​biomaterials.​2011.​10.​017
129.
Zurück zum Zitat Mohamed F, Stuart OA, Glehen O, Urano M, Sugarbaker PH (2004) Docetaxel and hyperthermia: factors that modify thermal enhancement. J Surg Oncol 88(1):14–20. doi:10.1002/jso.20117 Mohamed F, Stuart OA, Glehen O, Urano M, Sugarbaker PH (2004) Docetaxel and hyperthermia: factors that modify thermal enhancement. J Surg Oncol 88(1):14–20. doi:10.​1002/​jso.​20117
130.
Zurück zum Zitat Liu H, Liu T, Wu X, Li L, Tan L, Chen D, Tang F (2012) Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 24(6):755–761. doi:10.1002/adma.201103343 Liu H, Liu T, Wu X, Li L, Tan L, Chen D, Tang F (2012) Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 24(6):755–761. doi:10.​1002/​adma.​201103343
Metadaten
Titel
Engineering of Mesoporous Silica Nanoparticles for In Vivo Cancer Imaging and Therapy
verfasst von
Feng Chen
Weibo Cai
Hao Hong
Copyright-Jahr
2014
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4372-7_23

Neuer Inhalt