Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.12.2019 | SMST2019 | Ausgabe 4/2019

Shape Memory and Superelasticity 4/2019

Enhance Fatigue Resistance of Nanocrystalline NiTi by Laser Shock Peening

Zeitschrift:
Shape Memory and Superelasticity > Ausgabe 4/2019
Autoren:
Kai Yan, Pengbo Wei, Fuzeng Ren, Weifeng He, Qingping Sun
Wichtige Hinweise
This article is an invited submission to Shape Memory and Superelasticity selected from presentations at the Shape Memory and Superelastic Technology Conference and Exposition (SMST2019) held on May 13–17, 2019, at The Bodensee Forum in Konstanz, Germany, and has been expanded from the original presentation (Gray Header Bar: SMST2019).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

A pre-strain laser shock peening method is proposed to fabricate fatigue-resistant nanocrystalline NiTi with graded nanolayers and compressive residual stress layers. Grain size gradient surface layer of about 100 μm thick is fabricated on a 1.5-mm-thick bulk nanocrystalline NiTi plate. It is found that the nanostructure shows a gradient distribution from middle region of the plate to its laser-treated surface, and the grain size at the treated surface is about 5 nm. B2, B19′ phase and Ni4Ti3, Ni3Ti precipitates are found at the treated surface. The nanohardness at the laser-treated surface reaches 10 GPa. Residual stress profile on the laser-treated plate cross-section is measured by a focused ion beam-digital image correlation technique. The measured maximum residual compressive stress is about 1.2 GPa at the laser-treated top surface, while there is residual tensile stress of about 200 MPa in the middle region. Four-point bending displacement-controlled experiments show that the fatigue life of the NiTi sample increases about seven times after laser treatment. The work demonstrates that pre-strain laser shock peening without surface coating is an effective method to fabricate fatigue-resistant nanocrystalline NiTi with gradient grain size and compressive residual stress layers.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

Shape Memory and Superelasticity 4/2019 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise